Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #4123

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 25, 2019 by saxon_zh@saxon_zhGuest

CTCN模型训练一段时间后NAN

Created by: linrjing

使用CTCN模型代码,输入数据是自己的数据

  1. 测试1,img_size=512, concept_size=512, batch_size = 16. 第一个epoch训练正常,第二个epoch在中间出现NAN [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 0 Loss = 8.644265174865723, loc_loss = 5.305370330810547, cls_loss = 3.338895320892334 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 10 Loss = 6.298323631286621, loc_loss = 3.9766969680786133, cls_loss = 2.3216264247894287 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 20 Loss = 7.81887149810791, loc_loss = 4.746278762817383, cls_loss = 3.0725927352905273 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 30 Loss = 9.531373977661133, loc_loss = 5.976119041442871, cls_loss = 3.555255174636841 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 40 Loss = 8.562569618225098, loc_loss = 4.903314590454102, cls_loss = 3.659255027770996 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 50 Loss = 7.116206169128418, loc_loss = 3.607116222381592, cls_loss = 3.509089946746826 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 60 Loss = 8.900976181030273, loc_loss = 4.741877555847168, cls_loss = 4.1590986251831055 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 70 Loss = 7.006552219390869, loc_loss = 4.304408550262451, cls_loss = 2.702143430709839 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 80 Loss = 7.706241607666016, loc_loss = 4.250545978546143, cls_loss = 3.455695867538452 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 90 Loss = 8.307282447814941, loc_loss = 4.759175777435303, cls_loss = 3.5481057167053223 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 100 Loss = 7.775359630584717, loc_loss = 4.987478733062744, cls_loss = 2.7878808975219727 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 110 Loss = 8.040206909179688, loc_loss = 4.403718948364258, cls_loss = 3.6364874839782715 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 120 Loss = 9.691923141479492, loc_loss = 4.130779266357422, cls_loss = 5.561143398284912 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 130 Loss = 7.779775619506836, loc_loss = 4.071199417114258, cls_loss = 3.708575963973999 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 140 Loss = 7.102745532989502, loc_loss = 4.228488922119141, cls_loss = 2.8742568492889404 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 150 Loss = 6.970609188079834, loc_loss = 3.9636733531951904, cls_loss = 3.006936550140381 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 160 Loss = nan, loc_loss = 21.078128814697266, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 170 Loss = nan, loc_loss = 20.18567657470703, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 180 Loss = nan, loc_loss = 20.06766700744629, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 190 Loss = nan, loc_loss = 20.610614776611328, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 200 Loss = nan, loc_loss = 19.23656463623047, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 210 Loss = nan, loc_loss = 19.809160232543945, cls_loss = nan

  2. 测试2,img_size=512, concept_size=256, batch_size = 16. 第一个epoch训练正常,第二个epoch在中间出现NAN [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 0 Loss = 8.087115287780762, loc_loss = 4.917365074157715, cls_loss = 3.169750213623047 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 10 Loss = 7.561893463134766, loc_loss = 4.704628944396973, cls_loss = 2.857264280319214 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 20 Loss = 7.202031135559082, loc_loss = 4.352816581726074, cls_loss = 2.8492140769958496 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 30 Loss = 7.938170433044434, loc_loss = 5.153167247772217, cls_loss = 2.7850029468536377 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 40 Loss = 8.291640281677246, loc_loss = 5.546207904815674, cls_loss = 2.7454323768615723 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 50 Loss = 7.575397968292236, loc_loss = 4.737273216247559, cls_loss = 2.838124990463257 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 60 Loss = 7.889821529388428, loc_loss = 4.824648857116699, cls_loss = 3.0651731491088867 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 70 Loss = 8.803262710571289, loc_loss = 4.728842735290527, cls_loss = 4.074419975280762 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 80 Loss = 9.253735542297363, loc_loss = 4.693952560424805, cls_loss = 4.559782981872559 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 90 Loss = 8.738704681396484, loc_loss = 4.8759965896606445, cls_loss = 3.862708568572998 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 100 Loss = 7.218425750732422, loc_loss = 4.249882698059082, cls_loss = 2.96854305267334 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 110 Loss = 7.345929145812988, loc_loss = 4.364291191101074, cls_loss = 2.981637716293335 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 120 Loss = 7.921400547027588, loc_loss = 4.798431873321533, cls_loss = 3.122968912124634 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 130 Loss = 8.251079559326172, loc_loss = 4.602048873901367, cls_loss = 3.6490306854248047 [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 140 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 150 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 160 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 170 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 180 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 190 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 200 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 210 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 220 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 230 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 240 Loss = nan, loc_loss = nan, cls_loss = nan [INFO: metrics_util.py: 282]: [TRAIN] Epoch 1, iter 250 Loss = nan, loc_loss = nan, cls_loss = nan

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#4123
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7