“72e8d5cea4b91efa47572b34ebd2ce69dfc46379”上不存在“tests/script/tsim/git@gitcode.net:taosdata/tdengine.git”
PaddleNLP\similarity_net模型训练后无模型输出
Created by: xinaiwunai
在win10下操作,命令行如下。完成训练后,并没有任何结果在--output_dir ./model_files中。请问如何才能将训练后的结果保存?
PS E:\paddlehub\models\PaddleNLP\similarity_net> python run_classifier.py --task_name 'wyh_simmilarity_net_fine_tune_test' --use_cuda false --do_train True --do_valid True --do_test True --do_infer True --batch_size 128 --train_data_dir ./data/qqsim --valid_data_dir ./data/qqsim --test_data_dir ./data/qqsim --infer_data_dir ./data/infer_data --output_dir ./model_files --config_path ./config/bow_pairwise.json --vocab_path ./data/term2id.dict --epoch 10 --save_steps 1000 --validation_steps 100 --task_mode 'pairwise' --compute_accuracy False --lamda 0.958
----------- Configuration Arguments -----------
batch_size: 128
compute_accuracy: False
config_path: ./config/bow_pairwise.json
do_infer: True
do_test: True
do_train: True
do_valid: True
enable_ce: False
epoch: 10
infer_data_dir: ./data/infer_data
infer_result_path: infer_result
init_checkpoint: None
lamda: 0.958
output_dir: ./model_files
save_steps: 1000
skip_steps: 10
task_mode: pairwise
task_name: wyh_simmilarity_net_fine_tune_test
test_data_dir: ./data/qqsim
test_result_path: test_result
train_data_dir: ./data/qqsim
use_cuda: False
valid_data_dir: ./data/qqsim
validation_steps: 100
verbose_result: True
vocab_path: ./data/term2id.dict
------------------------------------------------
device count: 1
start train process ...
I0918 08:48:18.885494 9960 parallel_executor.cc:334] The number of CPUPlace, which is used in ParallelExecutor, is 1. And the Program will be copied 1 copies
I0918 08:48:18.889495 9960 build_strategy.cc:340] SeqOnlyAllReduceOps:0, num_trainers:1
epoch: 0, loss: 0.004120, used time: 7 sec
epoch: 1, loss: 0.000024, used time: 7 sec
epoch: 2, loss: 0.000006, used time: 7 sec
epoch: 3, loss: 0.000000, used time: 7 sec
epoch: 4, loss: 0.000000, used time: 7 sec
epoch: 5, loss: 0.000000, used time: 7 sec
global_steps: 100, valid_auc: 0.605413
epoch: 6, loss: 0.000000, used time: 7 sec
epoch: 7, loss: 0.000000, used time: 7 sec
epoch: 8, loss: 0.000000, used time: 7 sec
epoch: 9, loss: 0.000000, used time: 7 sec
AUC of test is 0.605461