Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #3340

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
“a7ae8256009ac7302898e306afff7af4d40bf781”上不存在“git@gitcode.net:taosdata/tdengine.git”
已关闭
开放中
Opened 9月 16, 2019 by saxon_zh@saxon_zhGuest

报错信息“EnforceNotMet: Invoke operator fetch error.”

Created by: tmylla

根据5种花卉分类的Resnet做102分类,却报错,而且是在运行一个batch后报错,为什么?

错误信息如下:

2019-09-16 23:10:09,740 - [line:549] - INFO: create prog success 2019-09-16 23:10:09,742 - [line:550] - INFO: train config: {'image_count': 6552, 'sgd_strategy': {'lr_decay': [1, 0.5, 0.25, 0.1, 0.01, 0.002], 'lr_epochs': [20, 40, 60, 80, 100], 'learning_rate': 0.002}, 'save_persistable_dir': './persistable-params', 'continue_train': False, 'label_dict': {}, 'image_enhance_strategy': {'need_crop': True, 'need_rotate': True, 'hue_delta': 18, 'need_distort': True, 'brightness_prob': 0.5, 'saturation_delta': 0.5, 'contrast_prob': 0.5, 'hue_prob': 0.5, 'brightness_delta': 0.125, 'contrast_delta': 0.5, 'need_flip': True, 'saturation_prob': 0.5}, 'momentum_strategy': {'lr_decay': [1, 0.5, 0.25, 0.1, 0.01, 0.002], 'lr_epochs': [20, 40, 60, 80, 100], 'learning_rate': 0.002}, 'adam_strategy': {'learning_rate': 0.002}, 'early_stop': {'successive_limit': 3, 'sample_frequency': 30, 'good_acc1': 0.85}, 'train_batch_size': 15, 'save_freeze_dir': './freeze-model', 'num_epochs': 40, 'mode': 'train', 'use_gpu': True, 'train_file_list': 'train.txt', 'mean_rgb': [127.5, 127.5, 127.5], 'input_size': [3, 224, 224], 'data_dir': 'data/data12479/hackathon-blossom-flower-classification/flower_data', 'rsm_strategy': {'lr_decay': [1, 0.5, 0.25, 0.1, 0.01, 0.002], 'lr_epochs': [20, 40, 60, 80, 100], 'learning_rate': 0.002}, 'class_dim': 102} 2019-09-16 23:10:09,743 - [line:551] - INFO: build input custom reader and data feeder 2019-09-16 23:10:09,747 - [line:564] - INFO: build newwork 2019-09-16 23:10:11,887 - [line:594] - INFO: current pass: 0, start read image 2019-09-16 23:10:18,417 - [line:609] - INFO: Pass 0, trainbatch 10, loss 7.132730960845947, acc1 0.06666667014360428, time 0.14 sec ---------------------------------------------------------------------------EnforceNotMet Traceback (most recent call last) in 646 init_log_config() 647 init_train_parameters() --> 648 train() in train() 598 loss, acc1, pred_ot = exe.run(main_program, 599 feed=feeder.feed(data), --> 600 fetch_list=train_fetch_list) 601 t2 = time.time() 602 batch_id += 1 /opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/executor.py in run(self, program, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache) 648 scope=scope, 649 return_numpy=return_numpy, --> 650 use_program_cache=use_program_cache) 651 else: 652 if fetch_list and program.is_data_parallel and program.program and ( /opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/executor.py in run(self, program, exe, feed, fetch_list, feed_var_name, fetch_var_name, scope, return_numpy, use_program_cache) 746 self.feed_data(program, feed, feed_var_name, scope) 747 if not use_program_cache: --> 748 exe.run(program.desc, scope, 0, True, True, fetch_var_name) 749 else: 750 exe.run_cached_prepared_ctx(ctx, scope, False, False, False) EnforceNotMet: Invoke operator fetch error. Python Callstacks: File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/framework.py", line 1748, in append_op attrs=kwargs.get("attrs", None)) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/executor.py", line 437, in add_feed_fetch_ops attrs={'col': i}) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/executor.py", line 744, in run fetch_var_name=fetch_var_name) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/paddle/fluid/executor.py", line 650, in run use_program_cache=use_program_cache) File "", line 600, in train fetch_list=train_fetch_list) File "", line 648, in train() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 3265, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 3183, in run_ast_nodes if (yield from self.run_code(code, result)): File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 3018, in run_cell_async interactivity=interactivity, compiler=compiler, result=result) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/async_helpers.py", line 67, in pseudo_sync_runner coro.send(None) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2843, in run_cell return runner(coro) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/IPython/core/interactiveshell.py", line 2817, in run_cell raw_cell, store_history, silent, shell_futures) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/zmqshell.py", line 536, in run_cell return super(ZMQInteractiveShell, self).run_cell(args, kwargs) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/ipkernel.py", line 294, in do_execute res = shell.run_cell(code, store_history=store_history, silent=silent) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/gen.py", line 326, in wrapper yielded = next(result) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 534, in execute_request user_expressions, allow_stdin, File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/gen.py", line 326, in wrapper yielded = next(result) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 267, in dispatch_shell yield gen.maybe_future(handler(stream, idents, msg)) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/gen.py", line 326, in wrapper yielded = next(result) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/kernelbase.py", line 357, in process_one yield gen.maybe_future(dispatch(args)) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/gen.py", line 1147, in run yielded = self.gen.send(value) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/gen.py", line 1233, in inner self.run() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/stack_context.py", line 300, in null_wrapper return fn(args, kwargs) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/ioloop.py", line 758, in _run_callback ret = callback() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/asyncio/events.py", line 127, in _run self._callback(self._args) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/asyncio/base_events.py", line 1425, in _run_once handle._run() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/asyncio/base_events.py", line 421, in run_forever self._run_once() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/tornado/platform/asyncio.py", line 132, in start self.asyncio_loop.run_forever() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel/kernelapp.py", line 505, in start self.io_loop.start() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/traitlets/config/application.py", line 658, in launch_instance app.start() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/site-packages/ipykernel_launcher.py", line 16, in app.launch_new_instance() File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/runpy.py", line 85, in _run_code exec(code, run_globals) File "/opt/conda/envs/python35-paddle120-env/lib/python3.5/runpy.py", line 193, in _run_module_as_main "main", mod_spec) C++ Callstacks: cudaMemcpy failed in paddle::platform::GpuMemcpySync (0x7f0b7e9eba40 -> 0x7f0a9abff040, length: 4): unspecified launch failure at [/paddle/paddle/fluid/platform/gpu_info.cc:280] PaddlePaddle Call Stacks: 0 0x7f0ea056e2e0p void paddle::platform::EnforceNotMet::Init<char const>(char const, char const, int) + 352 1 0x7f0ea056e659p paddle::platform::EnforceNotMet::EnforceNotMet(std::__exception_ptr::exception_ptr, char const, int) + 137 2 0x7f0ea25849ccp paddle::platform::GpuMemcpySync(void, void const, unsigned long, cudaMemcpyKind) + 188 3 0x7f0ea06f7079p void paddle::memory::Copy<paddle::platform::CPUPlace, paddle::platform::CUDAPlace>(paddle::platform::CPUPlace, void, paddle::platform::CUDAPlace, void const, unsigned long, CUstream_st*) + 249 4 0x7f0ea2524454p paddle::framework::TensorCopySync(paddle::framework::Tensor const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&, paddle::framework::Tensor*) + 900 5 0x7f0ea1f65490p paddle::operators::FetchOp::RunImpl(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) const + 656 6 0x7f0ea24c702cp paddle::framework::OperatorBase::Run(paddle::framework::Scope const&, boost::variant<paddle::platform::CUDAPlace, paddle::platform::CPUPlace, paddle::platform::CUDAPinnedPlace, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_, boost::detail::variant::void_> const&) + 332 7 0x7f0ea06f847ep paddle::framework::Executor::RunPreparedContext(paddle::framework::ExecutorPrepareContext*, paddle::framework::Scope*, bool, bool, bool) + 382 8 0x7f0ea06fb51fp paddle::framework::Executor::Run(paddle::framework::ProgramDesc const&, paddle::framework::Scope*, int, bool, bool, std::vector<std::string, std::allocatorstd::string > const&, bool) + 143 9 0x7f0ea055f96dp 10 0x7f0ea05a0ca6p 11 0x7f0f245e2199p PyCFunction_Call + 233 12 0x7f0f2467d3f9p PyEval_EvalFrameEx + 33545 13 0x7f0f2467f4b6p 14 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 15 0x7f0f2467f4b6p 16 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 17 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 18 0x7f0f2467f4b6p 19 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 20 0x7f0f2467f5ebp PyEval_EvalCode + 59 21 0x7f0f24672c5dp 22 0x7f0f245e2179p PyCFunction_Call + 201 23 0x7f0f2467cdbep PyEval_EvalFrameEx + 31950 24 0x7f0f245b6410p _PyGen_Send + 128 25 0x7f0f2467b953p PyEval_EvalFrameEx + 26723 26 0x7f0f245b6410p _PyGen_Send + 128 27 0x7f0f2467b953p PyEval_EvalFrameEx + 26723 28 0x7f0f245b6410p _PyGen_Send + 128 29 0x7f0f2467cd60p PyEval_EvalFrameEx + 31856 30 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 31 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 32 0x7f0f2467f4b6p 33 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 34 0x7f0f245bec33p 35 0x7f0f2458d33ap PyObject_Call + 106 36 0x7f0f246776eep PyEval_EvalFrameEx + 9726 37 0x7f0f2467f4b6p 38 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 39 0x7f0f245b56bap 40 0x7f0f24670af6p 41 0x7f0f245e2179p PyCFunction_Call + 201 42 0x7f0f2467cdbep PyEval_EvalFrameEx + 31950 43 0x7f0f2467f4b6p 44 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 45 0x7f0f245b56bap 46 0x7f0f24670af6p 47 0x7f0f245e2179p PyCFunction_Call + 201 48 0x7f0f2467cdbep PyEval_EvalFrameEx + 31950 49 0x7f0f2467f4b6p 50 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 51 0x7f0f245b56bap 52 0x7f0f24670af6p 53 0x7f0f245e2179p PyCFunction_Call + 201 54 0x7f0f2467cdbep PyEval_EvalFrameEx + 31950 55 0x7f0f2467f4b6p 56 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 57 0x7f0f245beb56p 58 0x7f0f2458d33ap PyObject_Call + 106 59 0x7f0f246776eep PyEval_EvalFrameEx + 9726 60 0x7f0f245b6410p _PyGen_Send + 128 61 0x7f0f2467cd60p PyEval_EvalFrameEx + 31856 62 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 63 0x7f0f2467f4b6p 64 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 65 0x7f0f245bec33p 66 0x7f0f2458d33ap PyObject_Call + 106 67 0x7f0f246776eep PyEval_EvalFrameEx + 9726 68 0x7f0f2467f4b6p 69 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 70 0x7f0f245beb56p 71 0x7f0f2458d33ap PyObject_Call + 106 72 0x7f0f246f2ccap 73 0x7f0f2458d33ap PyObject_Call + 106 74 0x7f0f246794c5p PyEval_EvalFrameEx + 17365 75 0x7f0f2467f4b6p 76 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 77 0x7f0f245beb56p 78 0x7f0f2458d33ap PyObject_Call + 106 79 0x7f0f246776eep PyEval_EvalFrameEx + 9726 80 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 81 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 82 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 83 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 84 0x7f0f2467d1d0p PyEval_EvalFrameEx + 32992 85 0x7f0f2467f4b6p 86 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 87 0x7f0f2467f4b6p 88 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 89 0x7f0f2467f5ebp PyEval_EvalCode + 59 90 0x7f0f24672c5dp 91 0x7f0f245e2179p PyCFunction_Call + 201 92 0x7f0f2467cdbep PyEval_EvalFrameEx + 31950 93 0x7f0f2467f4b6p 94 0x7f0f2467c5b5p PyEval_EvalFrameEx + 29893 95 0x7f0f2467f4b6p 96 0x7f0f2467f5a8p PyEval_EvalCodeEx + 72 97 0x7f0f245beb56p 98 0x7f0f2458d33ap PyObject_Call + 106 99 0x7f0f246cbba1p

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#3340
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7