Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #209

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 17, 2017 by saxon_zh@saxon_zhGuest

Some notes on experiment with MFCC

Created by: kuke

MFCCs (Mel Frequency Cepstral Coefficents) are a widely used representation of audio data in ASR (automic speech recognition), which are thought as a better approximation of the human auditory system's response than the linearly-spaced frequency spectrum. And many ASR systems achieved state-of-the-art performance by taking advantage of MFCCs. Considering Deep Speech 2 only taking the power spectrum as its input feature, it is worth evaluating the performance of MFCCs on the same network.

The experimental results will be continuously updated in this issue.

The MFCC feature used here is a 39-dimension vector, consisting of the 13 basic cepstral coefficents and the first and second order derivatives, with the first component replaced by the energy of the frame. At the first attempt, the training process follows the default setting totally in train.py except adjusting the kernel and padding size in conv layers to adapt the new feature dimension. But the convergence gets a little bit slow. Then inspired by Wav2letter, retrain the model with no striding in the feature dimension. And a relative better convergence appears, as shown in the figure below.

mfcc_traing_result

The validation cost doesn't decay significantly at the end, and the training is in progress with smaller learning rate after pass 25. The rest part of learning curves will be appended later.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#209
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7