Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #1577

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 12月 28, 2018 by saxon_zh@saxon_zhGuest

Is there an implementation of mnasnet model?

Created by: imistyrain

Like MnasNet-PyTorch, I wrote a implementation from mobilenet_v2.py Is there anyone can check the code ?

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr

__all__ = ['Mnasnet']

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}

class Mnasnet():
    def __init__(self):
        self.params = train_parameters

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      channels=None,
                      num_groups=1,
                      use_cudnn=True,
                      if_act=True):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(initializer=MSRA()),
            bias_attr=False)
        bn = fluid.layers.batch_norm(input=conv)
        if if_act:
            return fluid.layers.relu6(bn)
        else:
            return bn
    
    def shortcut(self, input, data_residual):
        return fluid.layers.elementwise_add(input, data_residual)

    def inverted_residual_unit(self, input, num_in_filter, num_filters,
                               ifshortcut, stride, filter_size, padding,
                               expansion_factor):
        num_expfilter = int(round(num_in_filter * expansion_factor))
        channel_expand = self.conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True)
        bottleneck_conv = self.conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding=filter_size//2,
            num_groups=num_expfilter,
            if_act=True,
            use_cudnn=False)
        linear_out = self.conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=False)
        if ifshortcut:
            out = self.shortcut(input=input, data_residual=linear_out)
            return out
        else:
            return linear_out

    def invresi_blocks(self, input, in_c, t, c, n, s,k):
        first_block = self.inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            padding=1,
            expansion_factor=t)

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block = self.inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                padding=1,
                expansion_factor=t)
        return last_residual_block
    
    def sepconv3x3(self,input,inp,oup):
        input=self.conv_bn_layer(
            input,
            num_filters=inp,
            filter_size=3,
            stride=1,
            padding=1,
            num_groups=inp,
            if_act=True)
        conv=self.conv_bn_layer(
            input,
            num_filters=oup,
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=False)
        return conv

    def net(self, input, class_dim=1000, scale=1.0):
        bottleneck_params_list = [
            # t, c, n, s, k
            [3, 24,  3, 2, 3],  # -> 56x56
            [3, 40,  3, 2, 5],  # -> 28x28
            [6, 80,  3, 2, 5],  # -> 14x14
            [6, 96,  2, 1, 3],  # -> 14x14
            [6, 192, 4, 2, 5],  # -> 7x7
            [6, 320, 1, 1, 3],  # -> 7x7
        ]
        in_c = int(32 * scale)
        input = self.conv_bn_layer(
            input,
            num_filters=in_c,
            filter_size=3,
            stride=2,
            padding=1,
            if_act=True)
        input=self.sepconv3x3(input,in_c,16)

        in_c =16
        for layer_setting in bottleneck_params_list:
            t, c, n, s, k = layer_setting
            input = self.invresi_blocks(
                input=input,
                in_c=in_c,
                t=t,
                c=int(c * scale),
                n=n,
                s=s, 
                k=k)
            in_c = int(c * scale)
            

        input = self.conv_bn_layer(
            input=input,
            num_filters=int(1280 * scale) if scale > 1.0 else 1280,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True)

        input = fluid.layers.pool2d(
            input=input,
            pool_size=7,
            pool_stride=1,
            pool_type='avg',
            global_pooling=True)

        output = fluid.layers.fc(input=input,
                                 size=class_dim,
                                 act='softmax',
                                 param_attr=ParamAttr(initializer=MSRA()))
        return output
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#1577
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7