Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #1352

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 10月 09, 2018 by saxon_zh@saxon_zhGuest

deep_fm调用自己的数据时报错

Created by: Ericzhuu

我们的数据已通过/deep_fm/preprocess.py进行预处理,在调用train函数时报错,错误日志如下图, 1 源代码如下,

import paddle.v2 as paddle

factor_size = 5
batch_size = 128
num_passes = 10
dense_feature_dim = 30
sparse_feature_dim = 269

feeding = {
    'dense_input': 0,
    'sparse_input': 1,
    'C1': 2,
    'C2': 3,
    'C3': 4,
    'C4': 5,
    'C5': 6,
    'C6': 7,
    'C7': 8,
    'C8': 9,
    'C9': 10,
    'C10': 11,
    'C11': 12,
    'C12': 13,
    'C13': 14,
    'C14': 15,
    'C15': 16,
    'C16': 17,
    'C17': 18,
    'C18': 19,
    'C19': 20,
    'C20': 21,
    'C21': 22,
    'C22': 23,
    'C23': 24,
    'C24': 25,
    'C25': 26,
    'C26': 27,
    'C27': 28,
    'C28': 29,
    'C29': 30,
    'label': 31
}

class Dataset:
    def _reader_creator(self, path, is_infer):
        def reader():
            with open(path, 'r') as f:
                for line in f:
                    features = line.rstrip('\n').split('\t')
                    dense_feature = map(float, features[0].split(','))
                    sparse_feature = map(int, features[1].split(','))
                    if not is_infer:
                        label = [int(features[2])]
                        yield [dense_feature, sparse_feature
                               ] + sparse_feature + [label]
                    else:
                        yield [dense_feature, sparse_feature] + sparse_feature

        return reader

    def train(self, path):
        return self._reader_creator(path, False)

    def test(self, path):
        return self._reader_creator(path, False)
    
def fm_layer(input, factor_size, fm_param_attr):
    first_order = paddle.layer.fc(input=input,
                        size=1,
                        act=paddle.activation.Linear())
    second_order = paddle.layer.factorization_machine(
        input=input,
        factor_size=factor_size,
        act=paddle.activation.Linear(),
        param_attr=fm_param_attr)
    out = paddle.layer.addto(
        input=[first_order, second_order],
        act=paddle.activation.Linear(),
        bias_attr=False)
    return out


def DeepFM(factor_size, infer=False):
    dense_input = paddle.layer.data(
        name="dense_input",
        type=paddle.data_type.dense_vector(dense_feature_dim))
    sparse_input = paddle.layer.data(
        name="sparse_input",
        type=paddle.data_type.sparse_binary_vector(sparse_feature_dim))
    sparse_input_ids = [
        paddle.layer.data(
            name="C" + str(i),
            type=paddle.data_type.integer_value(sparse_feature_dim))
        for i in range(1, 30)
    ]
    dense_fm = fm_layer(
        dense_input,
        factor_size,
        fm_param_attr=paddle.attr.Param(name="DenseFeatFactors"))
    sparse_fm = fm_layer(
        sparse_input,
        factor_size,
        fm_param_attr=paddle.attr.Param(name="SparseFeatFactors"))
    def embedding_layer(input):
        return paddle.layer.embedding(
            input=input,
            size=factor_size,
            param_attr=paddle.attr.Param(name="SparseFeatFactors"))

    sparse_embed_seq = map(embedding_layer, sparse_input_ids)
    sparse_embed = paddle.layer.concat(sparse_embed_seq)
    fc1 = paddle.layer.fc(input=[sparse_embed, dense_input],
                          size=400,
                          act=paddle.activation.Relu())
    fc2 = paddle.layer.fc(input=fc1, size=400, act=paddle.activation.Relu())
    fc3 = paddle.layer.fc(input=fc2, size=400, act=paddle.activation.Relu())

    predict = paddle.layer.fc(input=[dense_fm, sparse_fm, fc3],
                              size=1,
                              act=paddle.activation.Sigmoid())
    if not infer:
        label = paddle.layer.data(
            name="label", type=paddle.data_type.integer_value(1))
        cost = paddle.layer.multi_binary_label_cross_entropy_cost(
            input=predict, label=label)
        paddle.evaluator.classification_error(
            name="classification_error", input=predict, label=label)
        paddle.evaluator.auc(name="auc", input=predict, label=label)
        return cost
    else:
        return predict

def train():
    
    paddle.init(use_gpu=False, trainer_count=1)
    
    optimizer = paddle.optimizer.Adam(learning_rate=1e-4)
    model = DeepFM(factor_size)
    params = paddle.parameters.create(model)
    trainer = paddle.trainer.SGD(cost=model, parameters=params, update_equation=optimizer)

    dataset = Dataset()

    def __event_handler__(event):
        if isinstance(event, paddle.event.EndIteration):
            num_samples = event.batch_id * batch_size
            if event.batch_id % 10 == 0:
                print "Pass %d, Batch %d, Samples %d, Cost %f, %s" % (event.pass_id, event.batch_id, num_samples,
                                event.cost, event.metrics)

            if event.batch_id % 100 == 0:
                result = trainer.test(
                   reader=paddle.batch(
                      dataset.test('data/valid.txt'),
                      batch_size=batch_size),
                      feeding=feeding)
                print "Test %d-%d, Cost %f, %s" % (event.pass_id, event.batch_id, result.cost,
                                    result.metrics)

                #path = "{}/model-pass-{}-batch-{}.tar.gz".format(
                #    model_output_dir, event.pass_id, event.batch_id)
                #with gzip.open(path, 'w') as f:
                #    trainer.save_parameter_to_tar(f)

    trainer.train(
        reader=paddle.batch(
            paddle.reader.shuffle(
                dataset.train('data/train.txt'),
                buf_size=batch_size * 10000),
            batch_size=batch_size),
        feeding=feeding,
        event_handler=__event_handler__, 
        num_passes=num_passes)


if __name__ == '__main__':
    train()
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#1352
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7