Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • models
  • Issue
  • #133

M
models
  • 项目概览

PaddlePaddle / models
大约 2 年 前同步成功

通知 232
Star 6828
Fork 2962
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
M
models
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 602
    • Issue 602
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 255
    • 合并请求 255
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 6月 28, 2017 by saxon_zh@saxon_zhGuest

Train ds2 on THCHS30 (WIP)

Created by: pkuyym

I am trying to train ds2 on THCHS30 which is a mandarin dataset. A phenomenon is that we encounter error explosion easily when batch_size is big liking 64, 128 or 256. I try to clip the error to 1000 when inf appears. The clipping operation is very tricky, I catch inf and clip in paddle/v2/trainer.py as following:

cost_sum = out_args.sum()
import math
if (math.isinf(cost_sum)): cost_sum = 1000.0
cost = cost_sum / len(data_batch)

We can train ds2 normally after adding the clipping operation. I have tried to train the model using batch_shuffle_clipped provider and instance_shuffle provider. The learning curves are as following: shuffle_compare As we can see, instance_shuffle converges badly and I abandon this configuration after training several iterations. The batch_shuffle_clipped configuration looks like converging very slowly when the training cost goes down to 170~. The key settings of above experiments are:

setting value
batch_size 64
trainer_count 4
num_conv_layers 2
adam_learning_rate 0.0005

I also product another experiment on a tiny dataset which only contains 128 samples (first 128). Training data and validation data both use the tiny dataset. Training settings are same with above. Following are the learning curves:

small_data

From the figure above we can learn that the convergence is very unstable and slow. There exists a unreasonable gap between training curve and validation curve. Since the training data and validation data are same, the difference of two curves should be minor. Will figure out the reason of the anomalies.

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/models#133
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7