- 29 7月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* add voc_eval and yolo_darknet_voc * add yolov3_darknet_voc in MODEL_ZOO * fix default im_size * fix MODEL_ZOO note * fix is_bbox_normalized * extract map to map_utils.py * update yolov3_dorknet_voc mixup * add yolov3_r34_voc * add yolov3_mobilenet_v1_voc * fix drop empty in VAL mode * use cfg.num_classes * assert metric valid * enable difficulty can be None * add comment for bbox_eval * num_classes in retinanet
-
- 25 7月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* fix infer doc and config default * refine dataset exists * fix None proc
-
- 03 7月, 2019 1 次提交
-
-
由 qingqing01 提交于
* Fix some docs * Unify COCO and VOC * Change PASCAL to Pascal * Unify dataset/coco
-
- 28 6月, 2019 3 次提交
-
-
由 qingqing01 提交于
* Rename object_detection to PaddleDetection * Small fix for doc
-
由 qingqing01 提交于
-
由 Yang Zhang 提交于
* Clean up config files - reorder: batch_size -> data_set -> sample_transforms -> batch_transforms -> worker -> other - unify bool values, lower case true/false - remove `null` values - remove `shuffle` settings, covered by default values * Update ResNet50 pretrained weight url * Remove `use_padded_im_info` settings, covered by default value
-
- 27 6月, 2019 2 次提交
-
-
由 FlyingQianMM 提交于
* test=develop add retinanet_r101 and delete needless configures in data feeder * test=develop add retinanet_r101 and delete needless configures in data feeder
-
由 Kaipeng Deng 提交于
* add VOC visualize * fixn ssd_mobilenet_v1_voc.yml * use default label * clean TestFeed dataset config * fix voc default label * fix format * fix as review * revert voc default * use defult label for all * enable batch size != 1
-
- 25 6月, 2019 1 次提交
-
-
由 Kaipeng Deng 提交于
* refine infer with args * remove samples * fix as review * refine code * refine args * move get_test_images to infer.py * add visualize log * fix images = [] * fix args * refine infer.py * fix yolov3_r34.yml
-
- 24 6月, 2019 1 次提交
-
-
由 qingqing01 提交于
* Unified object detection framework based on PaddlePaddle. * Include algo: Faster, Mask, FPN, Cascade, RetinaNet, Yolo v3, SSD.
-