NeXtVLAD模型是第二届Youtube-8M视频理解竞赛中效果最好的单模型,在参数量小于80M的情况下,能得到高于0.87的GAP指标。该模型提供了一种将桢级别的视频特征转化并压缩成特征向量,以适用于大尺寸视频文件的分类的方法。其基本出发点是在NetVLAD模型的基础上,将高维度的特征先进行分组,通过引入attention机制聚合提取时间维度的信息,这样既可以获得较高的准确率,又可以使用更少的参数量。详细内容请参考[NeXtVLAD: An Efficient Neural Network to Aggregate Frame-level Features for Large-scale Video Classification](https://arxiv.org/abs/1811.05014)。
NeXtVLAD模型是第二届Youtube-8M视频理解竞赛中效果最好的单模型,在参数量小于80M的情况下,能得到高于0.87的GAP指标。该模型提供了一种将帧级别的视频特征转化并压缩成特征向量,以适用于大尺寸视频文件的分类的方法。其基本出发点是在NetVLAD模型的基础上,将高维度的特征先进行分组,通过引入attention机制聚合提取时间维度的信息,这样既可以获得较高的准确率,又可以使用更少的参数量。详细内容请参考[NeXtVLAD: An Efficient Neural Network to Aggregate Frame-level Features for Large-scale Video Classification](https://arxiv.org/abs/1811.05014)。