未验证 提交 feef259d 编写于 作者: K Kaipeng Deng 提交者: GitHub

Merge pull request #1985 from heavengate/yolov3_doc

add yolov3 in models doc.
......@@ -25,6 +25,7 @@ PaddlePaddle 提供了丰富的计算单元,使得用户可以采用模块化
[DPN](./PaddleCV/image_classification/models)|图像分类模型|结合了DenseNet和ResNeXt的网络结构,对图像分类效果有所提升|[Dual Path Networks](https://arxiv.org/abs/1707.01629)
[SE-ResNeXt](./PaddleCV/image_classification/models)|图像分类模型|ResNeXt中加入了SE block,提高了模型准确率|[Squeeze-and-excitation networks](https://arxiv.org/abs/1709.01507)
[SSD](./PaddleCV/object_detection/README_cn.md)|单阶段目标检测器|在不同尺度的特征图上检测对应尺度的目标,可以方便地插入到任何一种标准卷积网络中|[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325)
[YOLOv3](./PaddleCV/yolov3/README_cn.md)|单阶段目标检测器|基于darknet53主干网络在多种尺度的特征图上进行端到端实时目标检测,检测速度快|[YOLOv3: An Incremental Improvement](https://arxiv.org/abs/1804.02767)
[Face Detector: PyramidBox](./PaddleCV/face_detection/README_cn.md)|基于SSD的单阶段人脸检测器|利用上下文信息解决困难人脸的检测问题,网络表达能力高,鲁棒性强|[PyramidBox: A Context-assisted Single Shot Face Detector](https://arxiv.org/pdf/1803.07737.pdf)
[Faster RCNN](./PaddleCV/rcnn/README_cn.md)|典型的两阶段目标检测器|创造性地采用卷积网络自行产生建议框,并且和目标检测网络共享卷积网络,建议框数目减少,质量提高|[Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/abs/1506.01497)
[Mask RCNN](./PaddleCV/rcnn/README_cn.md)|基于Faster RCNN模型的经典实例分割模型|在原有Faster RCNN模型基础上添加分割分支,得到掩码结果,实现了掩码和类别预测关系的解藕。|[Mask R-CNN](https://arxiv.org/abs/1703.06870)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册