The following steps, inference, parameters tuning and evaluating, will require a language model during decoding.
A compressed language model is provided and can be accessed by
```
cd ./lm
sh run.sh
```
After the downloading is completed, then
```
cd ..
```
### Inference
For GPU inference
```
```
CUDA_VISIBLE_DEVICES=0 python infer.py
CUDA_VISIBLE_DEVICES=0 python infer.py
```
```
For CPU inference
```
python infer.py --use_gpu=False
```
More help for arguments:
More help for arguments:
```
```
...
@@ -92,14 +116,24 @@ python evaluate.py --help
...
@@ -92,14 +116,24 @@ python evaluate.py --help
### Parameters tuning
### Parameters tuning
Parameters tuning for the CTC beam search decoder
Usually, the parameters $\alpha$ and $\beta$ for the CTC [prefix beam search](https://arxiv.org/abs/1408.2873) decoder need to be tuned after retraining the acoustic model.
For GPU tuning
```
```
CUDA_VISIBLE_DEVICES=0 python tune.py
CUDA_VISIBLE_DEVICES=0 python tune.py
```
```
For CPU tuning
```
python tune.py --use_gpu=False
```
More help for arguments:
More help for arguments:
```
```
python tune.py --help
python tune.py --help
```
```
Then reset parameters with the tuning result before inference or evaluating.