提交 f67e732f 编写于 作者: W wanghaoshuang

Merge branch 'develop' of https://github.com/PaddlePaddle/models into ctc_doc

......@@ -17,7 +17,7 @@ addons:
- python-pip
- python2.7-dev
- clang-format-3.8
ssh_known_hosts: 52.76.173.135
ssh_known_hosts: 13.229.163.131
before_install:
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
- sudo pip install -U virtualenv pre-commit pip
......
......@@ -168,7 +168,7 @@ def profile(args):
start_time = time.time()
frames_seen = 0
# load_data
(features, labels, lod) = batch_data
(features, labels, lod, _) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
......
......@@ -192,7 +192,7 @@ def train(args):
test_data_reader.batch_iterator(args.batch_size,
args.minimum_batch_size)):
# load_data
(features, labels, lod) = batch_data
(features, labels, lod, _) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
......
......@@ -4,10 +4,105 @@ The minimum PaddlePaddle version needed for the code sample in this directory is
# Advbox
Advbox is a Python toolbox to create adversarial examples that fool neural networks. It requires Python and paddle.
Advbox is a toolbox to generate adversarial examples that fool neural networks and Advbox can benchmark the robustness of machine learning models.
## How to use
The Advbox is based on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) Fluid and is under continual development, always welcoming contributions of the latest method of adversarial attacks and defenses.
1. train a model and save it's parameters. (like fluid_mnist.py)
2. load the parameters which is trained in step1, then reconstruct the model.(like mnist_tutorial_fgsm.py)
3. use advbox to generate the adversarial sample.
## Overview
[Szegedy et al.](https://arxiv.org/abs/1312.6199) discovered an intriguing properties of deep neural networks in the context of image classification for the first time. They showed that despite the state-of-the-art deep networks are surprisingly susceptible to adversarial attacks in the form of small perturbations to images that remain (almost) imperceptible to human vision system. These perturbations are found by optimizing the input to maximize the prediction error and the images modified by these perturbations are called as `adversarial examples`. The profound implications of these results triggered a wide interest of researchers in adversarial attacks and their defenses for deep learning in general.
Advbox is similar to [Foolbox](https://github.com/bethgelab/foolbox) and [CleverHans](https://github.com/tensorflow/cleverhans). CleverHans only supports TensorFlow framework while foolbox interfaces with many popular machine learning frameworks such as PyTorch, Keras, TensorFlow, Theano, Lasagne and MXNet. However, these two great libraries don't support PaddlePaddle, an easy-to-use, efficient, flexible and scalable deep learning platform which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu.
## Usage
Advbox provides many stable reference implementations of modern methods to generate adversarial examples such as FGSM, DeepFool, JSMA. When you want to benchmark the robustness of your neural networks , you can use the advbox to generate some adversarial examples and benchmark the networks. Some tips of using Advbox:
1. Train a model and save the parameters.
2. Load the parameters which has been trained,then reconstruct the model.
3. Use advbox to generate the adversarial samples.
#### Dependencies
* PaddlePaddle: [the lastest develop branch](http://www.paddlepaddle.org/docs/develop/documentation/en/build_and_install/pip_install_en.html)
* Python 2.x
#### Structure
Network models, attack method's implements and the criterion that defines adversarial examples are three essential elements to generate adversarial examples. Misclassification is adopted as the adversarial criterion for briefness in Advbox.
The structure of Advbox module are as follows:
.
├── advbox
| ├── __init__.py
| ├── attack
| ├── __init__.py
| ├── base.py
| ├── deepfool.py
| ├── gradient_method.py
| ├── lbfgs.py
| └── saliency.py
| ├── models
| ├── __init__.py
| ├── base.py
| └── paddle.py
| └── adversary.py
├── tutorials
| ├── __init__.py
| ├── mnist_model.py
| ├── mnist_tutorial_lbfgs.py
| ├── mnist_tutorial_fgsm.py
| ├── mnist_tutorial_bim.py
| ├── mnist_tutorial_ilcm.py
| ├── mnist_tutorial_jsma.py
| └── mnist_tutorial_deepfool.py
└── README.md
**advbox.attack**
Advbox implements several popular adversarial attacks which search adversarial examples. Each attack method uses a distance measure(L1, L2, etc.) to quantify the size of adversarial perturbations. Advbox is easy to craft adversarial example as some attack methods could perform internal hyperparameter tuning to find the minimum perturbation.
**advbox.model**
Advbox implements interfaces to PaddlePaddle. Additionally, other deep learning framworks such as TensorFlow can also be defined and employed. The module is use to compute predictions and gradients for given inputs in a specific framework.
**advbox.adversary**
Adversary contains the original object, the target and the adversarial examples. It provides the misclassification as the criterion to accept a adversarial example.
## Tutorials
The `./tutorials/` folder provides some tutorials to generate adversarial examples on the MNIST dataset. You can slightly modify the code to apply to other dataset. These attack methods are supported in Advbox:
* [L-BFGS](https://arxiv.org/abs/1312.6199)
* [FGSM](https://arxiv.org/abs/1412.6572)
* [BIM](https://arxiv.org/abs/1607.02533)
* [ILCM](https://arxiv.org/abs/1607.02533)
* [JSMA](https://arxiv.org/pdf/1511.07528)
* [DeepFool](https://arxiv.org/abs/1511.04599)
## Testing
Benchmarks on a vanilla CNN model.
> MNIST
| adversarial attacks | fooling rate (non-targeted) | fooling rate (targeted) | max_epsilon | iterations | Strength |
|:-----:| :----: | :---: | :----: | :----: | :----: |
|L-BFGS| --- | 89.2% | --- | One shot | *** |
|FGSM| 57.8% | 26.55% | 0.3 | One shot| *** |
|BIM| 97.4% | --- | 0.1 | 100 | **** |
|ILCM| --- | 100.0% | 0.1 | 100 | **** |
|JSMA| 96.8% | 90.4%| 0.1 | 2000 | *** |
|DeepFool| 97.7% | 51.3% | --- | 100 | **** |
* The strength (higher for more asterisks) is based on the impression from the reviewed literature.
---
## References
* [Intriguing properties of neural networks](https://arxiv.org/abs/1312.6199), C. Szegedy et al., arxiv 2014
* [Explaining and Harnessing Adversarial Examples](https://arxiv.org/abs/1412.6572), I. Goodfellow et al., ICLR 2015
* [Adversarial Examples In The Physical World](https://arxiv.org/pdf/1607.02533v3.pdf), A. Kurakin et al., ICLR workshop 2017
* [The Limitations of Deep Learning in Adversarial Settings](https://arxiv.org/abs/1511.07528), N. Papernot et al., ESSP 2016
* [DeepFool: a simple and accurate method to fool deep neural networks](https://arxiv.org/abs/1511.04599), S. Moosavi-Dezfooli et al., CVPR 2016
* [Foolbox: A Python toolbox to benchmark the robustness of machine learning models] (https://arxiv.org/abs/1707.04131), Jonas Rauber et al., arxiv 2018
* [CleverHans: An adversarial example library for constructing attacks, building defenses, and benchmarking both](https://github.com/tensorflow/cleverhans#setting-up-cleverhans)
* [Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey](https://arxiv.org/abs/1801.00553), Naveed Akhtar, Ajmal Mian, arxiv 2018
......@@ -32,7 +32,12 @@ class GradientMethodAttack(Attack):
super(GradientMethodAttack, self).__init__(model)
self.support_targeted = support_targeted
def _apply(self, adversary, norm_ord=np.inf, epsilons=0.01, steps=100):
def _apply(self,
adversary,
norm_ord=np.inf,
epsilons=0.01,
steps=1,
epsilon_steps=100):
"""
Apply the gradient attack method.
:param adversary(Adversary):
......@@ -41,8 +46,11 @@ class GradientMethodAttack(Attack):
Order of the norm, such as np.inf, 1, 2, etc. It can't be 0.
:param epsilons(list|tuple|int):
Attack step size (input variation).
Largest step size if epsilons is not iterable.
:param steps:
The number of iterator steps.
The number of attack iteration.
:param epsilon_steps:
The number of Epsilons' iteration for each attack iteration.
:return:
adversary(Adversary): The Adversary object.
"""
......@@ -55,7 +63,7 @@ class GradientMethodAttack(Attack):
"This attack method doesn't support targeted attack!")
if not isinstance(epsilons, Iterable):
epsilons = np.linspace(epsilons, epsilons + 1e-10, num=steps)
epsilons = np.linspace(0, epsilons, num=epsilon_steps)
pre_label = adversary.original_label
min_, max_ = self.model.bounds()
......@@ -65,30 +73,33 @@ class GradientMethodAttack(Attack):
self.model.channel_axis() == adversary.original.shape[0] or
self.model.channel_axis() == adversary.original.shape[-1])
step = 1
adv_img = adversary.original
for epsilon in epsilons[:steps]:
if epsilon == 0.0:
continue
if adversary.is_targeted_attack:
gradient = -self.model.gradient(adv_img, adversary.target_label)
else:
gradient = self.model.gradient(adv_img,
adversary.original_label)
if norm_ord == np.inf:
gradient_norm = np.sign(gradient)
else:
gradient_norm = gradient / self._norm(gradient, ord=norm_ord)
adv_img = adv_img + epsilon * gradient_norm * (max_ - min_)
adv_img = np.clip(adv_img, min_, max_)
adv_label = np.argmax(self.model.predict(adv_img))
logging.info('step={}, epsilon = {:.5f}, pre_label = {}, '
'adv_label={}'.format(step, epsilon, pre_label,
adv_label))
if adversary.try_accept_the_example(adv_img, adv_label):
return adversary
step += 1
for epsilon in epsilons[:]:
step = 1
adv_img = adversary.original
for i in range(steps):
if epsilon == 0.0:
continue
if adversary.is_targeted_attack:
gradient = -self.model.gradient(adv_img,
adversary.target_label)
else:
gradient = self.model.gradient(adv_img,
adversary.original_label)
if norm_ord == np.inf:
gradient_norm = np.sign(gradient)
else:
gradient_norm = gradient / self._norm(
gradient, ord=norm_ord)
adv_img = adv_img + epsilon * gradient_norm * (max_ - min_)
adv_img = np.clip(adv_img, min_, max_)
adv_label = np.argmax(self.model.predict(adv_img))
logging.info('step={}, epsilon = {:.5f}, pre_label = {}, '
'adv_label={}'.format(step, epsilon, pre_label,
adv_label))
if adversary.try_accept_the_example(adv_img, adv_label):
return adversary
step += 1
return adversary
@staticmethod
......@@ -113,7 +124,7 @@ class FastGradientSignMethodTargetedAttack(GradientMethodAttack):
Paper link: https://arxiv.org/abs/1412.6572
"""
def _apply(self, adversary, epsilons=0.03):
def _apply(self, adversary, epsilons=0.01):
return GradientMethodAttack._apply(
self,
adversary=adversary,
......@@ -144,7 +155,7 @@ class IterativeLeastLikelyClassMethodAttack(GradientMethodAttack):
Paper link: https://arxiv.org/abs/1607.02533
"""
def _apply(self, adversary, epsilons=0.001, steps=1000):
def _apply(self, adversary, epsilons=0.01, steps=1000):
return GradientMethodAttack._apply(
self,
adversary=adversary,
......
"""
FGSM demos on mnist using advbox tool.
"""
import matplotlib.pyplot as plt
import paddle.v2 as paddle
import paddle.fluid as fluid
from advbox.adversary import Adversary
from advbox.attacks.gradient_method import FGSM
from advbox.models.paddle import PaddleModel
def cnn_model(img):
"""
Mnist cnn model
Args:
img(Varaible): the input image to be recognized
Returns:
Variable: the label prediction
"""
# conv1 = fluid.nets.conv2d()
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return logits
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(
feed_list=[IMG_NAME, LABEL_NAME],
place=place,
program=fluid.default_main_program())
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME,
logits.name, avg_cost.name, (-1, 1))
att = FGSM(m)
for data in train_reader():
# fgsm attack
adversary = att(Adversary(data[0][0], data[0][1]))
if adversary.is_successful():
plt.imshow(adversary.target, cmap='Greys_r')
plt.show()
# np.save('adv_img', adversary.target)
break
if __name__ == '__main__':
main()
"""
FGSM demos on mnist using advbox tool.
"""
import matplotlib.pyplot as plt
import paddle.v2 as paddle
import paddle.fluid as fluid
import numpy as np
from advbox import Adversary
from advbox.attacks.saliency import SaliencyMapAttack
from advbox.models.paddle import PaddleModel
def cnn_model(img):
"""
Mnist cnn model
Args:
img(Varaible): the input image to be recognized
Returns:
Variable: the label prediction
"""
# conv1 = fluid.nets.conv2d()
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return logits
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(
feed_list=[IMG_NAME, LABEL_NAME],
place=place,
program=fluid.default_main_program())
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME,
logits.name, avg_cost.name, (-1, 1))
attack = SaliencyMapAttack(m)
total_num = 0
success_num = 0
for data in train_reader():
total_num += 1
# adversary.set_target(True, target_label=target_label)
jsma_attack = attack(Adversary(data[0][0], data[0][1]))
if jsma_attack is not None and jsma_attack.is_successful():
# plt.imshow(jsma_attack.target, cmap='Greys_r')
# plt.show()
success_num += 1
print('original_label=%d, adversary examples label =%d' %
(data[0][1], jsma_attack.adversarial_label))
# np.save('adv_img', jsma_attack.adversarial_example)
print('total num = %d, success num = %d ' % (total_num, success_num))
if total_num == 100:
break
if __name__ == '__main__':
main()
"""
A set of tutorials for generating adversarial examples with advbox.
"""
\ No newline at end of file
......@@ -30,8 +30,9 @@ def mnist_cnn_model(img):
pool_size=2,
pool_stride=2,
act='relu')
fc = fluid.layers.fc(input=conv_pool_2, size=50, act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
logits = fluid.layers.fc(input=fc, size=10, act='softmax')
return logits
......@@ -60,7 +61,10 @@ def main():
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
exe.run(fluid.default_startup_program())
......@@ -74,9 +78,11 @@ def main():
feed=feeder.feed(data),
fetch_list=[avg_cost, batch_acc, batch_size])
pass_acc.add(value=acc, weight=b_size)
pass_acc_val = pass_acc.eval()[0]
print("pass_id=" + str(pass_id) + " acc=" + str(acc[0]) +
" pass_acc=" + str(pass_acc.eval()[0]))
if loss < LOSS_THRESHOLD and pass_acc > ACC_THRESHOLD:
" pass_acc=" + str(pass_acc_val))
if loss < LOSS_THRESHOLD and pass_acc_val > ACC_THRESHOLD:
# early stop
break
print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc.eval()[
......
"""
BIM tutorial on mnist using advbox tool.
BIM method iteratively take multiple small steps while adjusting the direction after each step.
It only supports non-targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.gradient_method import BIM
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = BIM(m)
attack_config = {"epsilons": 0.1, "steps": 100}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# BIM non-targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# BIM non-targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("bim attack done")
if __name__ == '__main__':
main()
"""
DeepFool tutorial on mnist using advbox tool.
Deepfool is a simple and accurate adversarial attack method.
It supports both targeted attack and non-targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.deepfool import DeepFoolAttack
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = DeepFoolAttack(m)
attack_config = {"iterations": 100, "overshoot": 9}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# DeepFool non-targeted attack
adversary = attack(adversary, **attack_config)
# DeepFool targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# DeepFool non-targeted attack
adversary = attack(adversary, **attack_config)
# DeepFool targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("deelfool attack done")
if __name__ == '__main__':
main()
"""
FGSM tutorial on mnist using advbox tool.
FGSM method is non-targeted attack while FGSMT is targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import numpy as np
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.gradient_method import FGSM
from advbox.attacks.gradient_method import FGSMT
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = FGSM(m)
# attack = FGSMT(m)
attack_config = {"epsilons": 0.3}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# FGSM non-targeted attack
adversary = attack(adversary, **attack_config)
# FGSMT targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# FGSM non-targeted attack
adversary = attack(adversary, **attack_config)
# FGSMT targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("fgsm attack done")
if __name__ == '__main__':
main()
"""
ILCM tutorial on mnist using advbox tool.
ILCM method extends "BIM" to support targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.gradient_method import ILCM
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = ILCM(m)
attack_config = {"epsilons": 0.1, "steps": 100}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
tlabel = 0
adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# ILCM targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
tlabel = 0
adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# ILCM targeted attack
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("ilcm attack done")
if __name__ == '__main__':
main()
"""
JSMA tutorial on mnist using advbox tool.
JSMA method supports both targeted attack and non-targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.saliency import JSMA
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = JSMA(m)
attack_config = {
"max_iter": 2000,
"theta": 0.1,
"max_perturbations_per_pixel": 7
}
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# JSMA non-targeted attack
adversary = attack(adversary, **attack_config)
# JSMA targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
# JSMA may return None
if adversary is not None and adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# JSMA non-targeted attack
adversary = attack(adversary, **attack_config)
# JSMA targeted attack
# tlabel = 0
# adversary.set_target(is_targeted_attack=True, target_label=tlabel)
# adversary = attack(adversary, **attack_config)
# JSMA may return None
if adversary is not None and adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("jsma attack done")
if __name__ == '__main__':
main()
"""
LBFGS tutorial on mnist using advbox tool.
LBFGS method only supports targeted attack.
"""
import sys
sys.path.append("..")
import matplotlib.pyplot as plt
import paddle.fluid as fluid
import paddle.v2 as paddle
from advbox.adversary import Adversary
from advbox.attacks.lbfgs import LBFGS
from advbox.models.paddle import PaddleModel
from tutorials.mnist_model import mnist_cnn_model
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
TOTAL_NUM = 500
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = mnist_cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
# use CPU
place = fluid.CPUPlace()
# use GPU
# place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.test(), buf_size=128 * 10),
batch_size=BATCH_SIZE)
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(
fluid.default_main_program(),
IMG_NAME,
LABEL_NAME,
logits.name,
avg_cost.name, (-1, 1),
channel_axis=1)
attack = LBFGS(m)
attack_config = {"epsilon": 0.001, }
# use train data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in train_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# LBFGS targeted attack
tlabel = 0
adversary.set_target(is_targeted_attack=True, target_label=tlabel)
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TRAIN_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
# use test data to generate adversarial examples
total_count = 0
fooling_count = 0
for data in test_reader():
total_count += 1
adversary = Adversary(data[0][0], data[0][1])
# LBFGS targeted attack
tlabel = 0
adversary.set_target(is_targeted_attack=True, target_label=tlabel)
adversary = attack(adversary, **attack_config)
if adversary.is_successful():
fooling_count += 1
print(
'attack success, original_label=%d, adversarial_label=%d, count=%d'
% (data[0][1], adversary.adversarial_label, total_count))
# plt.imshow(adversary.target, cmap='Greys_r')
# plt.show()
# np.save('adv_img', adversary.target)
else:
print('attack failed, original_label=%d, count=%d' %
(data[0][1], total_count))
if total_count >= TOTAL_NUM:
print(
"[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
% (fooling_count, total_count,
float(fooling_count) / total_count))
break
print("lbfgs attack done")
if __name__ == '__main__':
main()
......@@ -18,19 +18,19 @@ This tool is used to convert a Caffe model to Fluid model
### Tested models
- Lenet on mnist dataset
- Lenet
- ResNets:(ResNet-50, ResNet-101, ResNet-152)
model addr: `https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777`_
[model addr](https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777)
- GoogleNet:
model addr: `https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034`_
[model addr](https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034)
- VGG:
model addr: `https://gist.github.com/ksimonyan/211839e770f7b538e2d8`_
[model addr](https://gist.github.com/ksimonyan/211839e770f7b538e2d8)
- AlexNet:
model addr: `https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet`_
[model addr](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet)
### Notes
Some of this code come from here: https://github.com/ethereon/caffe-tensorflow
#!/usr/bin/python
#
#a tool to compare tensors in two files or two directories
#
import sys
import os
def walk_dir(rootdir):
for subdir, dirs, files in os.walk(rootdir):
for file in files:
yield file
def calc_diff(f1, f2):
import numpy as np
d1 = np.load(f1).flatten()
d2 = np.load(f2).flatten()
d1_num = reduce(lambda x, y: x * y, d1.shape)
d2_num = reduce(lambda x, y: x * y, d2.shape)
if d1_num != d2_num:
print d1.shape
print d2.shape
assert (d1_num == d2_num), "their shape is not consistent"
try:
df = np.abs(d1 - d2)
max_df = np.max(df)
sq_df = np.mean(df * df)
return max_df, sq_df
except Exception as e:
return -1.0, -1.0
def compare(path1, path2):
def diff(f1, f2):
max_df, sq_df = calc_diff(f1, f2)
print('compare %s <=> %s with result[max_df:%.4e, sq_df:%.4e]' %
(f1, f2, max_df, sq_df))
assert (max_df < 1e-5), \
'max_df is too large with value[%.6e]' % (max_df)
assert (sq_df < 1e-10), \
'sq_df is too large with value[%.6e]' % (sq_df)
if os.path.exists(path1) is False:
print('not found %s' % (path1))
return 1
elif os.path.exists(path2) is False:
print('not found %s' % (path2))
return 1
if path1.find('.npy') > 0 and path2.find('.npy') > 0:
diff(path1, path2)
return
for f in walk_dir(path2):
if f.find('.npy') < 0:
continue
f1 = os.path.join(path1, f)
f2 = os.path.join(path2, f)
diff(f1, f2)
print('all checking succeed to pass')
return 0
if __name__ == "__main__":
if len(sys.argv) == 1:
path1 = 'lenet.tf/results'
path2 = 'lenet.paddle/results'
elif len(sys.argv) == 3:
path1 = sys.argv[1]
path2 = sys.argv[2]
else:
print('usage:')
print(' %s [path1] [path2]' % (sys.argv[0]))
exit(1)
print('compare inner result in %s %s' % (path1, path2))
exit(compare(path1, path2))
#!/bin/bash
#
#function:
# a tool used to check the difference of models' results generated by caffe model and paddle model
#
#howto:
# bash diff.sh resnet50 #when this has been finished, you can get the difference in precision
#
#notes:
# 0, in order to infer using caffe, we need pycaffe installed
# 1, prepare your caffe model in 'models.caffe/', eg: 'model.caffe/resnet101/resnet101.[prototxt|caffemodel]'
# 2, converted paddle model will be in 'models'
# 3, results of layers will be stored in 'results/${model_name}.[paddle|caffe]'
# 4, only the last layer will be checked by default
model_name="resnet50"
results_root="results/"
if [[ -n $1 ]];then
if [ $1 = "-h" ];then
echo "usage:"
echo " bash $0 [model_name]"
echo " eg:bash $0 resnet50"
exit 0
fi
model_name=$1
fi
mkdir -p $results_root
model_prototxt="models.caffe/$model_name/${model_name}.prototxt"
model_caffemodel="models.caffe/${model_name}/${model_name}.caffemodel"
#1, dump layers' results from paddle
paddle_results="$results_root/${model_name}.paddle"
rm -rf $paddle_results
rm -rf "results.paddle"
bash run.sh $model_name ./models.caffe/$model_name ./models/$model_name
if [[ $? -ne 0 ]] || [[ ! -e "results.paddle" ]];then
echo "not found paddle's results, maybe failed to convert"
exit 1
fi
mv results.paddle $paddle_results
#2, dump layers' results from caffe
caffe_results="$results_root/${model_name}.caffe"
rm -rf $caffe_results
rm -rf "results.caffe"
cfpython ./infer.py caffe $model_prototxt $model_caffemodel $paddle_results/data.npy
if [[ $? -ne 0 ]] || [[ ! -e "results.caffe" ]];then
echo "not found caffe's results, maybe failed to do inference with caffe"
exit 1
fi
mv results.caffe $caffe_results
#3, extract layer names
cat $model_prototxt | grep name | perl -ne 'if(/^\s*name:\s+\"([^\"]+)/){ print $1."\n";}' >.layer_names
#4, compare one by one
for i in $(cat ".layer_names" | tail -n1);do
echo "process $i"
python compare.py $caffe_results/${i}.npy $paddle_results/${i}.npy
done
......@@ -10,8 +10,11 @@ import os
import sys
import inspect
import numpy as np
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
def import_fluid():
import paddle.fluid as fluid
return fluid
def load_data(imgfile, shape):
......@@ -52,8 +55,10 @@ def build_model(net_file, net_name):
print(e)
return None
input_name = 'data'
input_shape = MyNet.input_shapes()[input_name]
fluid = import_fluid()
inputs_dict = MyNet.input_shapes()
input_name = inputs_dict.keys()[0]
input_shape = inputs_dict[input_name]
images = fluid.layers.data(name='image', shape=input_shape, dtype='float32')
#label = fluid.layers.data(name='label', shape=[1], dtype='int64')
......@@ -64,7 +69,7 @@ def build_model(net_file, net_name):
def dump_results(results, names, root):
if os.path.exists(root) is False:
os.path.mkdir(root)
os.mkdir(root)
for i in range(len(names)):
n = names[i]
......@@ -73,9 +78,12 @@ def dump_results(results, names, root):
np.save(filename + '.npy', res)
def infer(net_file, net_name, model_file, imgfile, debug=False):
def infer(net_file, net_name, model_file, imgfile, debug=True):
""" do inference using a model which consist 'xxx.py' and 'xxx.npy'
"""
fluid = import_fluid()
#1, build model
net, input_shape = build_model(net_file, net_name)
prediction = net.get_output()
......@@ -109,34 +117,79 @@ def infer(net_file, net_name, model_file, imgfile, debug=False):
fetch_list=fetch_list_var)
if debug is True:
dump_path = 'results.layers'
dump_path = 'results.paddle'
dump_results(results, fetch_list_name, dump_path)
print('all results dumped to [%s]' % (dump_path))
print('all result of layers dumped to [%s]' % (dump_path))
else:
result = results[0]
print('predicted class:', np.argmax(result))
return 0
def caffe_infer(prototxt, caffemodel, datafile):
""" do inference using pycaffe for debug,
all intermediate results will be dumpped to 'results.caffe'
"""
import caffe
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
input_layer = net.blobs.keys()[0]
print('got name of input layer is:%s' % (input_layer))
input_shape = list(net.blobs[input_layer].data.shape[1:])
if '.npy' in datafile:
np_images = np.load(datafile)
else:
np_images = load_data(datafile, input_shape)
inputs = {input_layer: np_images}
net.forward_all(**inputs)
results = []
names = []
for k, v in net.blobs.items():
k = k.rstrip('_output')
k = k.replace('/', '_')
names.append(k)
results.append(v.data.copy())
dump_path = 'results.caffe'
dump_results(results, names, dump_path)
print('all result of layers dumped to [%s]' % (dump_path))
return 0
if __name__ == "__main__":
""" maybe more convenient to use 'run.sh' to call this tool
"""
net_file = 'models/resnet50/resnet50.py'
weight_file = 'models/resnet50/resnet50.npy'
imgfile = 'data/65.jpeg'
datafile = 'data/65.jpeg'
net_name = 'ResNet50'
argc = len(sys.argv)
if argc == 5:
if sys.argv[1] == 'caffe':
if len(sys.argv) != 5:
print('usage:')
print('\tpython %s caffe [prototxt] [caffemodel] [datafile]' %
(sys.argv[0]))
sys.exit(1)
prototxt = sys.argv[2]
caffemodel = sys.argv[3]
datafile = sys.argv[4]
sys.exit(caffe_infer(prototxt, caffemodel, datafile))
elif argc == 5:
net_file = sys.argv[1]
weight_file = sys.argv[2]
imgfile = sys.argv[3]
datafile = sys.argv[3]
net_name = sys.argv[4]
elif argc > 1:
print('usage:')
print('\tpython %s [net_file] [weight_file] [imgfile] [net_name]' %
print('\tpython %s [net_file] [weight_file] [datafile] [net_name]' %
(sys.argv[0]))
print('\teg:python %s %s %s %s %s' % (sys.argv[0], net_file,
weight_file, imgfile, net_name))
weight_file, datafile, net_name))
sys.exit(1)
infer(net_file, net_name, weight_file, imgfile)
infer(net_file, net_name, weight_file, datafile)
......@@ -3,7 +3,7 @@
#function:
# a tool used to:
# 1, convert a caffe model
# 2, do inference using this model
# 2, do inference(only in fluid) using this model
#
#usage:
# bash run.sh resnet50 ./models.caffe/resnet50 ./models/resnet50
......@@ -65,7 +65,12 @@ if [[ -z $only_convert ]];then
PYTHON=`which python`
fi
imgfile="data/65.jpeg"
net_name=`grep "name" $proto_file | head -n1 | perl -ne 'if(/\"([^\"]+)\"/){ print $1."\n";}'`
#FIX ME:
# only look the first line in prototxt file for the name of this network, maybe not correct
net_name=`grep "name" $proto_file | head -n1 | perl -ne 'if(/^\s*name\s*:\s*\"([^\"]+)\"/){ print $1."\n";}'`
if [[ -z $net_name ]];then
net_name="MyNet"
fi
$PYTHON ./infer.py $net_file $weight_file $imgfile $net_name
ret=$?
fi
......
......@@ -52,7 +52,10 @@ class Graph(object):
def __init__(self, nodes=None, name=None):
self.nodes = nodes or []
self.node_lut = {node.name: node for node in self.nodes}
self.name = name
if name is None or name == '':
self.name = 'MyNet'
else:
self.name = name
def add_node(self, node):
self.nodes.append(node)
......
......@@ -4,7 +4,7 @@ import numpy as np
def import_fluid():
import paddle.v2.fluid as fluid
import paddle.fluid as fluid
return fluid
......@@ -64,7 +64,7 @@ class Network(object):
if os.path.isdir(data_path):
assert (exe is not None), \
'must provide a executor to load fluid model'
fluid.io.load_persistables_if_exist(executor=exe, dirname=data_path)
fluid.io.load_persistables(executor=exe, dirname=data_path)
return True
#load model from a npy file
......@@ -161,56 +161,28 @@ class Network(object):
output = fluid.layers.relu(x=input)
return output
def _adjust_pad_if_needed(self, i_hw, k_hw, s_hw, p_hw):
#adjust the padding if needed
i_h, i_w = i_hw
k_h, k_w = k_hw
s_h, s_w = s_hw
p_h, p_w = p_hw
def is_consistent(i, k, s, p):
o = i + 2 * p - k
if o % s == 0:
return True
else:
return False
real_p_h = 0
real_p_w = 0
if is_consistent(i_h, k_h, s_h, p_h) is False:
real_p_h = int(k_h / 2)
if is_consistent(i_w, k_w, s_w, p_w) is False:
real_p_w = int(k_w / 2)
return [real_p_h, real_p_w]
def pool(self, pool_type, input, k_h, k_w, s_h, s_w, name, padding):
# Get the number of channels in the input
in_hw = input.shape[2:]
k_hw = [k_h, k_w]
s_hw = [s_h, s_w]
if padding is None:
#fix bug about the difference between conv and pool
#more info: https://github.com/BVLC/caffe/issues/1318
padding = self._adjust_pad_if_needed(in_hw, k_hw, s_hw, [0, 0])
fluid = import_fluid()
output = fluid.layers.pool2d(
input=input,
pool_size=k_hw,
pool_stride=s_hw,
pool_padding=padding,
ceil_mode=True,
pool_type=pool_type)
return output
@layer
def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=[0, 0]):
return self.pool('max', input, k_h, k_w, s_h, s_w, name, padding)
@layer
def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None):
def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=[0, 0]):
return self.pool('avg', input, k_h, k_w, s_h, s_w, name, padding)
@layer
......@@ -258,7 +230,12 @@ class Network(object):
return output
@layer
def batch_normalization(self, input, name, scale_offset=True, relu=False):
def batch_normalization(self,
input,
name,
scale_offset=True,
eps=1e-5,
relu=False):
# NOTE: Currently, only inference is supported
fluid = import_fluid()
prefix = name + '_'
......@@ -276,7 +253,7 @@ class Network(object):
bias_attr=bias_attr,
moving_mean_name=mean_name,
moving_variance_name=variance_name,
epsilon=1e-5,
epsilon=eps,
act='relu' if relu is True else None)
return output
......
......@@ -142,7 +142,13 @@ class TensorFlowMapper(NodeMapper):
def map_batch_norm(self, node):
scale_offset = len(node.data) == 4
kwargs = {} if scale_offset else {'scale_offset': False}
#this default value comes from caffe's param in batch_norm
default_eps = 1e-5
kwargs = {'scale_offset': scale_offset}
if node.parameters.eps != default_eps:
kwargs['eps'] = node.parameters.eps
return MaybeActivated(
node, default=False)('batch_normalization', **kwargs)
......@@ -236,7 +242,7 @@ class TensorFlowEmitter(object):
func_def = self.statement('@classmethod')
func_def += self.statement('def convert(cls, npy_model, fluid_path):')
self.indent()
func_def += self.statement('import paddle.v2.fluid as fluid')
func_def += self.statement('fluid = import_fluid()')
for l in codes:
func_def += self.statement(l)
return '\n' + func_def
......
import os
import numpy as np
import time
import sys
import paddle.v2 as paddle
import paddle.fluid as fluid
import reader
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
......@@ -124,164 +119,3 @@ def SE_ResNeXt(input, class_dim, infer=False, layers=50):
drop = pool
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
return out
def train(learning_rate,
batch_size,
num_passes,
init_model=None,
model_save_dir='model',
parallel=True,
use_nccl=True,
lr_strategy=None,
layers=50):
class_dim = 1000
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
with pd.do():
image_ = pd.read_input(image)
label_ = pd.read_input(label)
out = SE_ResNeXt(input=image_, class_dim=class_dim, layers=layers)
cost = fluid.layers.cross_entropy(input=out, label=label_)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label_, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label_, k=5)
pd.write_output(avg_cost)
pd.write_output(acc_top1)
pd.write_output(acc_top5)
avg_cost, acc_top1, acc_top5 = pd()
avg_cost = fluid.layers.mean(x=avg_cost)
acc_top1 = fluid.layers.mean(x=acc_top1)
acc_top5 = fluid.layers.mean(x=acc_top5)
else:
out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
if lr_strategy is None:
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
else:
bd = lr_strategy["bd"]
lr = lr_strategy["lr"]
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opts = optimizer.minimize(avg_cost)
fluid.memory_optimize(fluid.default_main_program())
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
inference_program = fluid.io.get_inference_program(
[avg_cost, acc_top1, acc_top5])
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if init_model is not None:
fluid.io.load_persistables(exe, init_model)
train_reader = paddle.batch(reader.train(), batch_size=batch_size)
test_reader = paddle.batch(reader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes):
train_info = [[], [], []]
test_info = [[], [], []]
for batch_id, data in enumerate(train_reader()):
t1 = time.time()
loss, acc1, acc5 = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, acc_top1, acc_top5])
t2 = time.time()
period = t2 - t1
train_info[0].append(loss[0])
train_info[1].append(acc1[0])
train_info[2].append(acc5[0])
if batch_id % 10 == 0:
print("Pass {0}, trainbatch {1}, loss {2}, \
acc1 {3}, acc5 {4} time {5}"
.format(pass_id, \
batch_id, loss[0], acc1[0], acc5[0], \
"%2.2f sec" % period))
sys.stdout.flush()
train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean()
for data in test_reader():
t1 = time.time()
loss, acc1, acc5 = exe.run(
inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost, acc_top1, acc_top5])
t2 = time.time()
period = t2 - t1
test_info[0].append(loss[0])
test_info[1].append(acc1[0])
test_info[2].append(acc5[0])
if batch_id % 10 == 0:
print("Pass {0},testbatch {1},loss {2}, \
acc1 {3},acc5 {4},time {5}"
.format(pass_id, \
batch_id, loss[0], acc1[0], acc5[0], \
"%2.2f sec" % period))
sys.stdout.flush()
test_loss = np.array(test_info[0]).mean()
test_acc1 = np.array(test_info[1]).mean()
test_acc5 = np.array(test_info[2]).mean()
print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
test_loss {4}, test_acc1 {5}, test_acc5 {6}"
.format(pass_id, \
train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
test_acc5))
sys.stdout.flush()
model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
if __name__ == '__main__':
epoch_points = [30, 60, 90]
total_images = 1281167
batch_size = 256
step = int(total_images / batch_size + 1)
bd = [e * step for e in epoch_points]
lr = [0.1, 0.01, 0.001, 0.0001]
lr_strategy = {"bd": bd, "lr": lr}
use_nccl = True
# layers: 50, 152
layers = 50
train(
learning_rate=0.1,
batch_size=batch_size,
num_passes=120,
init_model=None,
parallel=True,
use_nccl=True,
lr_strategy=lr_strategy,
layers=layers)
import os
import numpy as np
import time
import sys
import paddle.v2 as paddle
import paddle.fluid as fluid
from se_resnext import SE_ResNeXt
import reader
import argparse
import functools
from utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 256, "Minibatch size.")
add_arg('num_layers', int, 50, "How many layers for SE-ResNeXt model.")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('parallel_exe', bool, True, "Whether to use ParallelExecutor to train or not.")
def train_paralle_do(args,
learning_rate,
batch_size,
num_passes,
init_model=None,
model_save_dir='model',
parallel=True,
use_nccl=True,
lr_strategy=None,
layers=50):
class_dim = 1000
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
if parallel:
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
with pd.do():
image_ = pd.read_input(image)
label_ = pd.read_input(label)
out = SE_ResNeXt(input=image_, class_dim=class_dim, layers=layers)
cost = fluid.layers.cross_entropy(input=out, label=label_)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label_, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label_, k=5)
pd.write_output(avg_cost)
pd.write_output(acc_top1)
pd.write_output(acc_top5)
avg_cost, acc_top1, acc_top5 = pd()
avg_cost = fluid.layers.mean(x=avg_cost)
acc_top1 = fluid.layers.mean(x=acc_top1)
acc_top5 = fluid.layers.mean(x=acc_top5)
else:
out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
if lr_strategy is None:
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
else:
bd = lr_strategy["bd"]
lr = lr_strategy["lr"]
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
inference_program = fluid.default_main_program().clone(for_test=True)
opts = optimizer.minimize(avg_cost)
if args.with_mem_opt:
fluid.memory_optimize(fluid.default_main_program())
fluid.memory_optimize(inference_program)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if init_model is not None:
fluid.io.load_persistables(exe, init_model)
train_reader = paddle.batch(reader.train(), batch_size=batch_size)
test_reader = paddle.batch(reader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes):
train_info = [[], [], []]
test_info = [[], [], []]
for batch_id, data in enumerate(train_reader()):
t1 = time.time()
loss, acc1, acc5 = exe.run(
fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, acc_top1, acc_top5])
t2 = time.time()
period = t2 - t1
train_info[0].append(loss[0])
train_info[1].append(acc1[0])
train_info[2].append(acc5[0])
if batch_id % 10 == 0:
print("Pass {0}, trainbatch {1}, loss {2}, \
acc1 {3}, acc5 {4} time {5}"
.format(pass_id, \
batch_id, loss[0], acc1[0], acc5[0], \
"%2.2f sec" % period))
sys.stdout.flush()
train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean()
for data in test_reader():
t1 = time.time()
loss, acc1, acc5 = exe.run(
inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost, acc_top1, acc_top5])
t2 = time.time()
period = t2 - t1
test_info[0].append(loss[0])
test_info[1].append(acc1[0])
test_info[2].append(acc5[0])
if batch_id % 10 == 0:
print("Pass {0},testbatch {1},loss {2}, \
acc1 {3},acc5 {4},time {5}"
.format(pass_id, \
batch_id, loss[0], acc1[0], acc5[0], \
"%2.2f sec" % period))
sys.stdout.flush()
test_loss = np.array(test_info[0]).mean()
test_acc1 = np.array(test_info[1]).mean()
test_acc5 = np.array(test_info[2]).mean()
print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
test_loss {4}, test_acc1 {5}, test_acc5 {6}"
.format(pass_id, \
train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
test_acc5))
sys.stdout.flush()
model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
def train_parallel_exe(args,
learning_rate,
batch_size,
num_passes,
init_model=None,
model_save_dir='model',
parallel=True,
use_nccl=True,
lr_strategy=None,
layers=50):
class_dim = 1000
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = SE_ResNeXt(input=image, class_dim=class_dim, layers=layers)
cost = fluid.layers.cross_entropy(input=out, label=label)
acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
avg_cost = fluid.layers.mean(x=cost)
test_program = fluid.default_main_program().clone(for_test=True)
if lr_strategy is None:
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
else:
bd = lr_strategy["bd"]
lr = lr_strategy["lr"]
optimizer = fluid.optimizer.Momentum(
learning_rate=fluid.layers.piecewise_decay(
boundaries=bd, values=lr),
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opts = optimizer.minimize(avg_cost)
if args.with_mem_opt:
fluid.memory_optimize(fluid.default_main_program())
fluid.memory_optimize(test_program)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if init_model is not None:
fluid.io.load_persistables(exe, init_model)
train_reader = paddle.batch(reader.train(), batch_size=batch_size)
test_reader = paddle.batch(reader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
test_exe = fluid.ParallelExecutor(
use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
fetch_list = [avg_cost.name, acc_top1.name, acc_top5.name]
for pass_id in range(num_passes):
train_info = [[], [], []]
test_info = [[], [], []]
for batch_id, data in enumerate(train_reader()):
t1 = time.time()
loss, acc1, acc5 = train_exe.run(
fetch_list,
feed_dict=feeder.feed(data))
t2 = time.time()
period = t2 - t1
loss = np.mean(np.array(loss))
acc1 = np.mean(np.array(acc1))
acc5 = np.mean(np.array(acc5))
train_info[0].append(loss)
train_info[1].append(acc1)
train_info[2].append(acc5)
if batch_id % 10 == 0:
print("Pass {0}, trainbatch {1}, loss {2}, \
acc1 {3}, acc5 {4} time {5}"
.format(pass_id, \
batch_id, loss, acc1, acc5, \
"%2.2f sec" % period))
sys.stdout.flush()
train_loss = np.array(train_info[0]).mean()
train_acc1 = np.array(train_info[1]).mean()
train_acc5 = np.array(train_info[2]).mean()
for data in test_reader():
t1 = time.time()
loss, acc1, acc5 = test_exe.run(
fetch_list,
feed_dict=feeder.feed(data))
t2 = time.time()
period = t2 - t1
loss = np.mean(np.array(loss))
acc1 = np.mean(np.array(acc1))
acc5 = np.mean(np.array(acc5))
test_info[0].append(loss)
test_info[1].append(acc1)
test_info[2].append(acc5)
if batch_id % 10 == 0:
print("Pass {0},testbatch {1},loss {2}, \
acc1 {3},acc5 {4},time {5}"
.format(pass_id, \
batch_id, loss, acc1, acc5, \
"%2.2f sec" % period))
sys.stdout.flush()
test_loss = np.array(test_info[0]).mean()
test_acc1 = np.array(test_info[1]).mean()
test_acc5 = np.array(test_info[2]).mean()
print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, \
test_loss {4}, test_acc1 {5}, test_acc5 {6}"
.format(pass_id, \
train_loss, train_acc1, train_acc5, test_loss, test_acc1, \
test_acc5))
sys.stdout.flush()
model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path):
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
epoch_points = [30, 60, 90]
total_images = 1281167
batch_size = args.batch_size
step = int(total_images / batch_size + 1)
bd = [e * step for e in epoch_points]
lr = [0.1, 0.01, 0.001, 0.0001]
lr_strategy = {"bd": bd, "lr": lr}
use_nccl = True
# layers: 50, 152
layers = args.num_layers
method = train_parallel_exe if args.parallel_exe else train_parallel_do
method(args,
learning_rate=0.1,
batch_size=batch_size,
num_passes=120,
init_model=None,
parallel=True,
use_nccl=True,
lr_strategy=lr_strategy,
layers=layers)
"""Contains common utility functions."""
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import numpy as np
from paddle.fluid import core
def print_arguments(args):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
print("----------- Configuration Arguments -----------")
for arg, value in sorted(vars(args).iteritems()):
print("%s: %s" % (arg, value))
print("------------------------------------------------")
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
......@@ -15,6 +15,9 @@ class TrainTaskConfig(object):
# the parameters for learning rate scheduling.
warmup_steps = 4000
# the flag indicating to use average loss or sum loss when training.
use_avg_cost = False
# the directory for saving trained models.
model_dir = "trained_models"
......@@ -22,8 +25,7 @@ class TrainTaskConfig(object):
class InferTaskConfig(object):
use_gpu = False
# the number of examples in one run for sequence generation.
# currently the batch size can only be set to 1.
batch_size = 1
batch_size = 10
# the parameters for beam search.
beam_size = 5
......@@ -31,6 +33,11 @@ class InferTaskConfig(object):
# the number of decoded sentences to output.
n_best = 1
# the flags indicating whether to output the special tokens.
output_bos = False
output_eos = False
output_unk = False
# the directory for loading the trained model.
model_path = "trained_models/pass_1.infer.model"
......@@ -56,6 +63,8 @@ class ModelHyperParams(object):
bos_idx = 0
# index for <eos> token
eos_idx = 1
# index for <unk> token
unk_idx = 2
# position value corresponding to the <pad> token.
pos_pad_idx = 0
......@@ -93,6 +102,7 @@ encoder_input_data_names = (
"src_word",
"src_pos",
"src_slf_attn_bias",
"src_data_shape",
"src_slf_attn_pre_softmax_shape",
"src_slf_attn_post_softmax_shape", )
......@@ -102,6 +112,7 @@ decoder_input_data_names = (
"trg_pos",
"trg_slf_attn_bias",
"trg_src_attn_bias",
"trg_data_shape",
"trg_slf_attn_pre_softmax_shape",
"trg_slf_attn_post_softmax_shape",
"trg_src_attn_pre_softmax_shape",
......
import numpy as np
import paddle.v2 as paddle
import paddle
import paddle.fluid as fluid
import model
......@@ -11,10 +11,26 @@ from config import InferTaskConfig, ModelHyperParams, \
from train import pad_batch_data
def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
decoder, dec_in_names, dec_out_names, beam_size, max_length,
n_best, batch_size, n_head, src_pad_idx, trg_pad_idx,
bos_idx, eos_idx):
def translate_batch(exe,
src_words,
encoder,
enc_in_names,
enc_out_names,
decoder,
dec_in_names,
dec_out_names,
beam_size,
max_length,
n_best,
batch_size,
n_head,
d_model,
src_pad_idx,
trg_pad_idx,
bos_idx,
eos_idx,
unk_idx,
output_unk=True):
"""
Run the encoder program once and run the decoder program multiple times to
implement beam search externally.
......@@ -28,6 +44,11 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
return_pos=True,
return_attn_bias=True,
return_max_len=False)
# Append the data shape input to reshape the output of embedding layer.
enc_in_data = enc_in_data + [
np.array(
[-1, enc_in_data[2].shape[-1], d_model], dtype="int32")
]
# Append the shape inputs to reshape before and after softmax in encoder
# self attention.
enc_in_data = enc_in_data + [
......@@ -44,11 +65,16 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
scores = np.zeros((batch_size, beam_size), dtype="float32")
prev_branchs = [[] for i in range(batch_size)]
next_ids = [[] for i in range(batch_size)]
# Use beam_map to map the instance idx in batch to beam idx, since the
# Use beam_inst_map to map beam idx to the instance idx in batch, since the
# size of feeded batch is changing.
beam_map = range(batch_size)
beam_inst_map = {
beam_idx: inst_idx
for inst_idx, beam_idx in enumerate(range(batch_size))
}
# Use active_beams to recode the alive.
active_beams = range(batch_size)
def beam_backtrace(prev_branchs, next_ids, n_best=beam_size, add_bos=True):
def beam_backtrace(prev_branchs, next_ids, n_best=beam_size):
"""
Decode and select n_best sequences for one instance by backtrace.
"""
......@@ -60,7 +86,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
seq.append(next_ids[j][k])
k = prev_branchs[j][k]
seq = seq[::-1]
seq = [bos_idx] + seq if add_bos else seq
# Add the <bos>, since next_ids don't include the <bos>.
seq = [bos_idx] + seq
seqs.append(seq)
return seqs
......@@ -82,8 +109,14 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
[-1e9]).astype("float32")
# This is used to remove attention on the paddings of source sequences.
trg_src_attn_bias = np.tile(
src_slf_attn_bias[:, :, ::src_max_length, :],
[beam_size, 1, trg_max_len, 1])
src_slf_attn_bias[:, :, ::src_max_length, :][:, np.newaxis],
[1, beam_size, 1, trg_max_len, 1]).reshape([
-1, src_slf_attn_bias.shape[1], trg_max_len,
src_slf_attn_bias.shape[-1]
])
# Append the shape input to reshape the output of embedding layer.
trg_data_shape = np.array(
[batch_size * beam_size, trg_max_len, d_model], dtype="int32")
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape = np.array(
......@@ -96,26 +129,27 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
[-1, trg_src_attn_bias.shape[-1]], dtype="int32")
trg_src_attn_post_softmax_shape = np.array(
trg_src_attn_bias.shape, dtype="int32")
enc_output = np.tile(enc_output, [beam_size, 1, 1])
enc_output = np.tile(
enc_output[:, np.newaxis], [1, beam_size, 1, 1]).reshape(
[-1, enc_output.shape[-2], enc_output.shape[-1]])
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output
trg_data_shape, trg_slf_attn_pre_softmax_shape, \
trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
trg_src_attn_post_softmax_shape, enc_output
def update_dec_in_data(dec_in_data, next_ids, active_beams):
def update_dec_in_data(dec_in_data, next_ids, active_beams, beam_inst_map):
"""
Update the input data of decoder mainly by slicing from the previous
input data and dropping the finished instance beams.
"""
trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output = dec_in_data
trg_cur_len = len(next_ids[0]) + 1 # include the <bos>
trg_data_shape, trg_slf_attn_pre_softmax_shape, \
trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
trg_src_attn_post_softmax_shape, enc_output = dec_in_data
trg_cur_len = trg_slf_attn_bias.shape[-1] + 1
trg_words = np.array(
[
beam_backtrace(
prev_branchs[beam_idx], next_ids[beam_idx], add_bos=True)
beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx])
for beam_idx in active_beams
],
dtype="int64")
......@@ -123,6 +157,7 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_pos = np.array(
[range(1, trg_cur_len + 1)] * len(active_beams) * beam_size,
dtype="int64").reshape([-1, 1])
active_beams = [beam_inst_map[beam_idx] for beam_idx in active_beams]
active_beams_indice = (
(np.array(active_beams) * beam_size)[:, np.newaxis] +
np.array(range(beam_size))[np.newaxis, :]).flatten()
......@@ -137,6 +172,10 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias = np.tile(trg_src_attn_bias[
active_beams_indice, :, ::trg_src_attn_bias.shape[2], :],
[1, 1, trg_cur_len, 1])
# Append the shape input to reshape the output of embedding layer.
trg_data_shape = np.array(
[len(active_beams) * beam_size, trg_cur_len, d_model],
dtype="int32")
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape = np.array(
......@@ -151,9 +190,9 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias.shape, dtype="int32")
enc_output = enc_output[active_beams_indice, :, :]
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output
trg_data_shape, trg_slf_attn_pre_softmax_shape, \
trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape, \
trg_src_attn_post_softmax_shape, enc_output
dec_in_data = init_dec_in_data(batch_size, beam_size, enc_in_data,
enc_output)
......@@ -162,13 +201,18 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
feed=dict(zip(dec_in_names, dec_in_data)),
fetch_list=dec_out_names)[0]
predict_all = np.log(
predict_all.reshape([len(beam_map) * beam_size, i + 1, -1])[:,
-1, :])
predict_all = (predict_all + scores[beam_map].reshape(
[len(beam_map) * beam_size, -1])).reshape(
[len(beam_map), beam_size, -1])
predict_all.reshape([len(beam_inst_map) * beam_size, i + 1, -1])
[:, -1, :])
predict_all = (predict_all + scores[active_beams].reshape(
[len(beam_inst_map) * beam_size, -1])).reshape(
[len(beam_inst_map), beam_size, -1])
if not output_unk: # To exclude the <unk> token.
predict_all[:, :, unk_idx] = -1e9
active_beams = []
for inst_idx, beam_idx in enumerate(beam_map):
for beam_idx in range(batch_size):
if not beam_inst_map.has_key(beam_idx):
continue
inst_idx = beam_inst_map[beam_idx]
predict = (predict_all[inst_idx, :, :]
if i != 0 else predict_all[inst_idx, 0, :]).flatten()
top_k_indice = np.argpartition(predict, -beam_size)[-beam_size:]
......@@ -181,13 +225,20 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
next_ids[beam_idx].append(top_scores_ids % predict_all.shape[-1])
if next_ids[beam_idx][-1][0] != eos_idx:
active_beams.append(beam_idx)
beam_map = active_beams
if len(beam_map) == 0:
if len(active_beams) == 0:
break
dec_in_data = update_dec_in_data(dec_in_data, next_ids, active_beams)
dec_in_data = update_dec_in_data(dec_in_data, next_ids, active_beams,
beam_inst_map)
beam_inst_map = {
beam_idx: inst_idx
for inst_idx, beam_idx in enumerate(active_beams)
}
# Decode beams and select n_best sequences for each instance by backtrace.
seqs = [beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx], n_best)]
seqs = [
beam_backtrace(prev_branchs[beam_idx], next_ids[beam_idx], n_best)
for beam_idx in range(batch_size)
]
return seqs, scores[:, :n_best].tolist()
......@@ -195,10 +246,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
def main():
place = fluid.CUDAPlace(0) if InferTaskConfig.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
# The current program desc is coupled with batch_size and the only
# supported batch size is 1 currently.
encoder_program = fluid.Program()
model.batch_size = InferTaskConfig.batch_size
with fluid.program_guard(main_program=encoder_program):
enc_output = encoder(
ModelHyperParams.src_vocab_size + 1,
......@@ -208,7 +257,6 @@ def main():
ModelHyperParams.d_inner_hid, ModelHyperParams.dropout,
ModelHyperParams.src_pad_idx, ModelHyperParams.pos_pad_idx)
model.batch_size = InferTaskConfig.batch_size * InferTaskConfig.beam_size
decoder_program = fluid.Program()
with fluid.program_guard(main_program=decoder_program):
predict = decoder(
......@@ -253,18 +301,52 @@ def main():
trg_idx2word = paddle.dataset.wmt16.get_dict(
"de", dict_size=ModelHyperParams.trg_vocab_size, reverse=True)
# Append the <pad> token since the dict provided by dataset.wmt16 does
# not include it.
trg_idx2word[ModelHyperParams.trg_pad_idx] = "<pad>"
def post_process_seq(seq,
bos_idx=ModelHyperParams.bos_idx,
eos_idx=ModelHyperParams.eos_idx,
output_bos=InferTaskConfig.output_bos,
output_eos=InferTaskConfig.output_eos):
"""
Post-process the beam-search decoded sequence. Truncate from the first
<eos> and remove the <bos> and <eos> tokens currently.
"""
eos_pos = len(seq) - 1
for i, idx in enumerate(seq):
if idx == eos_idx:
eos_pos = i
break
seq = seq[:eos_pos + 1]
return filter(
lambda idx: (output_bos or idx != bos_idx) and \
(output_eos or idx != eos_idx),
seq)
for batch_id, data in enumerate(test_data()):
batch_seqs, batch_scores = translate_batch(
exe, [item[0] for item in data], encoder_program,
encoder_input_data_names, [enc_output.name], decoder_program,
decoder_input_data_names, [predict.name], InferTaskConfig.beam_size,
InferTaskConfig.max_length, InferTaskConfig.n_best,
len(data), ModelHyperParams.n_head, ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx, ModelHyperParams.bos_idx,
ModelHyperParams.eos_idx)
exe, [item[0] for item in data],
encoder_program,
encoder_input_data_names, [enc_output.name],
decoder_program,
decoder_input_data_names, [predict.name],
InferTaskConfig.beam_size,
InferTaskConfig.max_length,
InferTaskConfig.n_best,
len(data),
ModelHyperParams.n_head,
ModelHyperParams.d_model,
ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx,
ModelHyperParams.bos_idx,
ModelHyperParams.eos_idx,
ModelHyperParams.unk_idx,
output_unk=InferTaskConfig.output_unk)
for i in range(len(batch_seqs)):
seqs = batch_seqs[i]
# Post-process the beam-search decoded sequences.
seqs = map(post_process_seq, batch_seqs[i])
scores = batch_scores[i]
for seq in seqs:
print(" ".join([trg_idx2word[idx] for idx in seq]))
......
......@@ -7,9 +7,6 @@ import paddle.fluid.layers as layers
from config import TrainTaskConfig, pos_enc_param_names, \
encoder_input_data_names, decoder_input_data_names, label_data_names
# FIXME(guosheng): Remove out the batch_size from the model.
batch_size = TrainTaskConfig.batch_size
def position_encoding_init(n_position, d_pos_vec):
"""
......@@ -85,9 +82,10 @@ def multi_head_attention(queries,
return x
hidden_size = x.shape[-1]
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(
x=x, shape=[batch_size, -1, n_head, hidden_size // n_head])
x=x, shape=[0, -1, n_head, hidden_size // n_head])
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
......@@ -103,11 +101,11 @@ def multi_head_attention(queries,
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# FIXME(guosheng): Decouple the program desc with batch_size.
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(
x=trans_x,
shape=map(int,
[batch_size, -1, trans_x.shape[2] * trans_x.shape[3]]))
shape=map(int, [0, -1, trans_x.shape[2] * trans_x.shape[3]]))
def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
"""
......@@ -205,6 +203,7 @@ def prepare_encoder(src_word,
src_max_len,
dropout_rate=0.,
pos_pad_idx=0,
src_data_shape=None,
pos_enc_param_name=None):
"""Add word embeddings and position encodings.
The output tensor has a shape of:
......@@ -224,9 +223,10 @@ def prepare_encoder(src_word,
param_attr=fluid.ParamAttr(
name=pos_enc_param_name, trainable=False))
enc_input = src_word_emb + src_pos_enc
# FIXME(guosheng): Decouple the program desc with batch_size.
enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim])
enc_input = layers.reshape(
x=enc_input,
shape=[-1, src_max_len, src_emb_dim],
actual_shape=src_data_shape)
return layers.dropout(
enc_input, dropout_prob=dropout_rate,
is_test=False) if dropout_rate else enc_input
......@@ -401,20 +401,23 @@ def decoder(dec_input,
def make_inputs(input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos,
slf_attn_bias_flag,
src_attn_bias_flag,
enc_output_flag=False,
data_shape_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=True):
"""
Define the input data layers for the transformer model.
"""
input_layers = []
# The shapes here act as placeholder.
# The shapes set here is to pass the infer-shape in compile time.
batch_size = 1 # Only for the infer-shape in compile time.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
# The actual data shape of word is:
# [batch_size * max_len_in_batch, 1]
word = layers.data(
name=input_data_names[len(input_layers)],
shape=[batch_size * max_length, 1],
......@@ -422,6 +425,8 @@ def make_inputs(input_data_names,
append_batch_size=False)
input_layers += [word]
# This is used for position data or label weight.
# The actual data shape of pos is:
# [batch_size * max_len_in_batch, 1]
pos = layers.data(
name=input_data_names[len(input_layers)],
shape=[batch_size * max_length, 1],
......@@ -432,6 +437,8 @@ def make_inputs(input_data_names,
# This input is used to remove attention weights on paddings for the
# encoder and to remove attention weights on subsequent words for the
# decoder.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, max_len_in_batch, max_len_in_batch]
slf_attn_bias = layers.data(
name=input_data_names[len(input_layers)],
shape=[batch_size, n_head, max_length, max_length],
......@@ -439,40 +446,56 @@ def make_inputs(input_data_names,
append_batch_size=False)
input_layers += [slf_attn_bias]
if src_attn_bias_flag:
# This input is used to remove attention weights on paddings.
# This input is used to remove attention weights on paddings. It's used
# in encoder-decoder attention.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, n_head, trg_max_len_in_batch, src_max_len_in_batch]
src_attn_bias = layers.data(
name=input_data_names[len(input_layers)],
shape=[batch_size, n_head, max_length, max_length],
dtype="float32",
append_batch_size=False)
input_layers += [src_attn_bias]
if data_shape_flag:
# This input is used to reshape the output of embedding layer.
data_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
dtype="int32",
append_batch_size=False)
input_layers += [data_shape]
if slf_attn_shape_flag:
# This shape input is used to reshape before softmax in self attention.
slf_attn_pre_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
shape=[2],
dtype="int32",
append_batch_size=False)
input_layers += [slf_attn_pre_softmax_shape]
# This shape input is used to reshape after softmax in self attention.
slf_attn_post_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
shape=[4],
dtype="int32",
append_batch_size=False)
input_layers += [slf_attn_post_softmax_shape]
if src_attn_shape_flag:
src_attn_pre_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
shape=[2],
dtype="int32",
append_batch_size=False)
input_layers += [src_attn_pre_softmax_shape]
src_attn_post_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
shape=[4],
dtype="int32",
append_batch_size=False)
input_layers += [src_attn_post_softmax_shape]
if enc_output_flag:
# This input is used in independent decoder program for inference.
# The actual data shape of slf_attn_bias_flag is:
# [batch_size, max_len_in_batch, d_model]
enc_output = layers.data(
name=input_data_names[len(input_layers)],
shape=[batch_size, max_length, d_model],
......@@ -497,16 +520,16 @@ def transformer(
src_pad_idx,
trg_pad_idx,
pos_pad_idx, ):
enc_input_layers = make_inputs(
enc_inputs = make_inputs(
encoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=False,
enc_output_flag=False,
data_shape_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=False)
......@@ -522,18 +545,18 @@ def transformer(
dropout_rate,
src_pad_idx,
pos_pad_idx,
enc_input_layers, )
enc_inputs, )
dec_input_layers = make_inputs(
dec_inputs = make_inputs(
decoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=True,
enc_output_flag=False,
data_shape_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=True)
......@@ -549,7 +572,7 @@ def transformer(
dropout_rate,
trg_pad_idx,
pos_pad_idx,
dec_input_layers,
dec_inputs,
enc_output, )
# Padding index do not contribute to the total loss. The weights is used to
......@@ -558,17 +581,20 @@ def transformer(
label_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=False,
slf_attn_bias_flag=False,
src_attn_bias_flag=False,
enc_output_flag=False,
data_shape_flag=False,
slf_attn_shape_flag=False,
src_attn_shape_flag=False)
cost = layers.softmax_with_cross_entropy(logits=predict, label=gold)
weighted_cost = cost * weights
return layers.reduce_sum(weighted_cost), predict
sum_cost = layers.reduce_sum(weighted_cost)
token_num = layers.reduce_sum(weights)
avg_cost = sum_cost / token_num
return sum_cost, avg_cost, predict, token_num
def wrap_encoder(src_vocab_size,
......@@ -582,28 +608,30 @@ def wrap_encoder(src_vocab_size,
dropout_rate,
src_pad_idx,
pos_pad_idx,
enc_input_layers=None):
enc_inputs=None):
"""
The wrapper assembles together all needed layers for the encoder.
"""
if enc_input_layers is None:
if enc_inputs is None:
# This is used to implement independent encoder program in inference.
src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape = make_inputs(
src_word, src_pos, src_slf_attn_bias, src_data_shape, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape = \
make_inputs(
encoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=False,
enc_output_flag=False,
data_shape_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=False)
else:
src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape = enc_input_layers
src_word, src_pos, src_slf_attn_bias, src_data_shape, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape = \
enc_inputs
enc_input = prepare_encoder(
src_word,
src_pos,
......@@ -611,7 +639,9 @@ def wrap_encoder(src_vocab_size,
d_model,
src_pad_idx,
max_length,
dropout_rate, )
dropout_rate,
pos_pad_idx,
src_data_shape, )
enc_output = encoder(
enc_input,
src_slf_attn_bias,
......@@ -638,33 +668,33 @@ def wrap_decoder(trg_vocab_size,
dropout_rate,
trg_pad_idx,
pos_pad_idx,
dec_input_layers=None,
dec_inputs=None,
enc_output=None):
"""
The wrapper assembles together all needed layers for the decoder.
"""
if dec_input_layers is None:
if dec_inputs is None:
# This is used to implement independent decoder program in inference.
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
src_attn_pre_softmax_shape, src_attn_post_softmax_shape, \
enc_output = make_inputs(
trg_data_shape, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape, src_attn_pre_softmax_shape, \
src_attn_post_softmax_shape, enc_output = make_inputs(
decoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=True,
enc_output_flag=True,
data_shape_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=True)
else:
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
src_attn_pre_softmax_shape, src_attn_post_softmax_shape = \
dec_input_layers
trg_data_shape, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape, src_attn_pre_softmax_shape, \
src_attn_post_softmax_shape = dec_inputs
dec_input = prepare_decoder(
trg_word,
......@@ -673,7 +703,9 @@ def wrap_decoder(trg_vocab_size,
d_model,
trg_pad_idx,
max_length,
dropout_rate, )
dropout_rate,
pos_pad_idx,
trg_data_shape, )
dec_output = decoder(
dec_input,
enc_output,
......@@ -697,5 +729,5 @@ def wrap_decoder(trg_vocab_size,
bias_attr=False,
num_flatten_dims=2),
shape=[-1, trg_vocab_size],
act="softmax" if dec_input_layers is None else None)
act="softmax" if dec_inputs is None else None)
return predict
import os
import time
import numpy as np
import paddle.v2 as paddle
import paddle
import paddle.fluid as fluid
from model import transformer, position_encoding_init
......@@ -56,7 +57,7 @@ def pad_batch_data(insts,
def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
max_length, n_head):
n_head, d_model):
"""
Put all padded data needed by training into a dict.
"""
......@@ -66,6 +67,10 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
[inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
[1, 1, trg_max_len, 1]).astype("float32")
# These shape tensors are used in reshape_op.
src_data_shape = np.array([len(insts), src_max_len, d_model], dtype="int32")
trg_data_shape = np.array([len(insts), trg_max_len, d_model], dtype="int32")
src_slf_attn_pre_softmax_shape = np.array(
[-1, src_slf_attn_bias.shape[-1]], dtype="int32")
src_slf_attn_post_softmax_shape = np.array(
......@@ -78,17 +83,19 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
[-1, trg_src_attn_bias.shape[-1]], dtype="int32")
trg_src_attn_post_softmax_shape = np.array(
trg_src_attn_bias.shape, dtype="int32")
lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
False, False, False, False)
lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
input_dict = dict(
zip(input_data_names, [
src_word, src_pos, src_slf_attn_bias,
src_word, src_pos, src_slf_attn_bias, src_data_shape,
src_slf_attn_pre_softmax_shape, src_slf_attn_post_softmax_shape,
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias,
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
lbl_word, lbl_weight
trg_data_shape, trg_slf_attn_pre_softmax_shape,
trg_slf_attn_post_softmax_shape, trg_src_attn_pre_softmax_shape,
trg_src_attn_post_softmax_shape, lbl_word, lbl_weight
]))
return input_dict
......@@ -97,7 +104,7 @@ def main():
place = fluid.CUDAPlace(0) if TrainTaskConfig.use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
cost, predict = transformer(
sum_cost, avg_cost, predict, token_num = transformer(
ModelHyperParams.src_vocab_size + 1,
ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
ModelHyperParams.n_layer, ModelHyperParams.n_head,
......@@ -114,7 +121,7 @@ def main():
beta1=TrainTaskConfig.beta1,
beta2=TrainTaskConfig.beta2,
epsilon=TrainTaskConfig.eps)
optimizer.minimize(cost)
optimizer.minimize(avg_cost if TrainTaskConfig.use_avg_cost else sum_cost)
train_data = paddle.batch(
paddle.reader.shuffle(
......@@ -126,27 +133,31 @@ def main():
# Program to do validation.
test_program = fluid.default_main_program().clone()
with fluid.program_guard(test_program):
test_program = fluid.io.get_inference_program([cost])
test_program = fluid.io.get_inference_program([avg_cost])
val_data = paddle.batch(
paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
ModelHyperParams.trg_vocab_size),
batch_size=TrainTaskConfig.batch_size)
def test(exe):
test_costs = []
test_total_cost = 0
test_total_token = 0
for batch_id, data in enumerate(val_data()):
if len(data) != TrainTaskConfig.batch_size:
continue
data_input = prepare_batch_input(
data, encoder_input_data_names + decoder_input_data_names[:-1] +
label_data_names, ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
ModelHyperParams.n_head)
test_cost = exe.run(test_program,
feed=data_input,
fetch_list=[cost])[0]
test_costs.append(test_cost)
return np.mean(test_costs)
ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
test_sum_cost, test_token_num = exe.run(
test_program,
feed=data_input,
fetch_list=[sum_cost, token_num],
use_program_cache=True)
test_total_cost += test_sum_cost
test_total_token += test_token_num
test_avg_cost = test_total_cost / test_total_token
test_ppl = np.exp([min(test_avg_cost, 100)])
return test_avg_cost, test_ppl
# Initialize the parameters.
exe.run(fluid.framework.default_startup_program())
......@@ -158,27 +169,28 @@ def main():
ModelHyperParams.d_model), place)
for pass_id in xrange(TrainTaskConfig.pass_num):
pass_start_time = time.time()
for batch_id, data in enumerate(train_data()):
# The current program desc is coupled with batch_size, thus all
# mini-batches must have the same number of instances currently.
if len(data) != TrainTaskConfig.batch_size:
continue
data_input = prepare_batch_input(
data, encoder_input_data_names + decoder_input_data_names[:-1] +
label_data_names, ModelHyperParams.src_pad_idx,
ModelHyperParams.trg_pad_idx, ModelHyperParams.max_length,
ModelHyperParams.n_head)
ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head,
ModelHyperParams.d_model)
lr_scheduler.update_learning_rate(data_input)
outs = exe.run(fluid.framework.default_main_program(),
feed=data_input,
fetch_list=[cost],
fetch_list=[sum_cost, avg_cost],
use_program_cache=True)
cost_val = np.array(outs[0])
print("pass_id = " + str(pass_id) + " batch = " + str(batch_id) +
" cost = " + str(cost_val))
sum_cost_val, avg_cost_val = np.array(outs[0]), np.array(outs[1])
print("epoch: %d, batch: %d, sum loss: %f, avg loss: %f, ppl: %f" %
(pass_id, batch_id, sum_cost_val, avg_cost_val,
np.exp([min(avg_cost_val[0], 100)])))
# Validate and save the model for inference.
val_cost = test(exe)
print("pass_id = " + str(pass_id) + " val_cost = " + str(val_cost))
val_avg_cost, val_ppl = test(exe)
pass_end_time = time.time()
time_consumed = pass_end_time - pass_start_time
print("epoch: %d, val avg loss: %f, val ppl: %f, "
"consumed %fs" % (pass_id, val_avg_cost, val_ppl, time_consumed))
fluid.io.save_inference_model(
os.path.join(TrainTaskConfig.model_dir,
"pass_" + str(pass_id) + ".infer.model"),
......
......@@ -13,7 +13,7 @@ def conv_bn(input,
num_groups=1,
act='relu',
use_cudnn=True):
parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
parameter_attr = ParamAttr(initializer=MSRA())
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
......@@ -25,14 +25,11 @@ def conv_bn(input,
use_cudnn=use_cudnn,
param_attr=parameter_attr,
bias_attr=False)
parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
bias_attr = ParamAttr(learning_rate=0.2)
return fluid.layers.batch_norm(
input=conv,
act=act,
epsilon=0.00001,
param_attr=parameter_attr,
bias_attr=bias_attr)
#parameter_attr = ParamAttr(learning_rate=0.1, initializer=MSRA())
#bias_attr = ParamAttr(learning_rate=0.2)
return fluid.layers.batch_norm(input=conv, act=act, epsilon=0.00001)
#param_attr=parameter_attr,
#bias_attr=bias_attr)
def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
......@@ -76,7 +73,7 @@ def extra_block(input, num_filters1, num_filters2, num_groups, stride, scale):
return normal_conv
def mobile_net(img, img_shape, scale=1.0):
def mobile_net(num_classes, img, img_shape, scale=1.0):
# 300x300
tmp = conv_bn(img, 3, int(32 * scale), 2, 1, 3)
# 150x150
......@@ -104,10 +101,11 @@ def mobile_net(img, img_shape, scale=1.0):
module16 = extra_block(module15, 128, 256, 1, 2, scale)
# 2x2
module17 = extra_block(module16, 64, 128, 1, 2, scale)
mbox_locs, mbox_confs, box, box_var = fluid.layers.multi_box_head(
inputs=[module11, module13, module14, module15, module16, module17],
image=img,
num_classes=21,
num_classes=num_classes,
min_ratio=20,
max_ratio=90,
min_sizes=[60.0, 105.0, 150.0, 195.0, 240.0, 285.0],
......
......@@ -16,19 +16,29 @@ import image_util
from paddle.utils.image_util import *
import random
from PIL import Image
from PIL import ImageDraw
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
# cocoapi
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
class Settings(object):
def __init__(self, data_dir, label_file, resize_h, resize_w, mean_value,
apply_distort, apply_expand):
def __init__(self, dataset, toy, data_dir, label_file, resize_h, resize_w,
mean_value, apply_distort, apply_expand):
self._dataset = dataset
self._toy = toy
self._data_dir = data_dir
self._label_list = []
label_fpath = os.path.join(data_dir, label_file)
for line in open(label_fpath):
self._label_list.append(line.strip())
if dataset == "pascalvoc":
self._label_list = []
label_fpath = os.path.join(data_dir, label_file)
for line in open(label_fpath):
self._label_list.append(line.strip())
self._apply_distort = apply_distort
self._apply_expand = apply_expand
......@@ -47,6 +57,14 @@ class Settings(object):
self._brightness_prob = 0.5
self._brightness_delta = 0.125
@property
def dataset(self):
return self._dataset
@property
def toy(self):
return self._toy
@property
def apply_distort(self):
return self._apply_expand
......@@ -59,6 +77,10 @@ class Settings(object):
def data_dir(self):
return self._data_dir
@data_dir.setter
def data_dir(self, data_dir):
self._data_dir = data_dir
@property
def label_list(self):
return self._label_list
......@@ -78,23 +100,72 @@ class Settings(object):
def _reader_creator(settings, file_list, mode, shuffle):
def reader():
with open(file_list) as flist:
lines = [line.strip() for line in flist]
if shuffle:
random.shuffle(lines)
for line in lines:
if settings.dataset == 'coco':
coco = COCO(file_list)
image_ids = coco.getImgIds()
images = coco.loadImgs(image_ids)
category_ids = coco.getCatIds()
category_names = [
item['name'] for item in coco.loadCats(category_ids)
]
elif settings.dataset == 'pascalvoc':
flist = open(file_list)
images = [line.strip() for line in flist]
if not settings.toy == 0:
images = images[:settings.toy] if len(
images) > settings.toy else images
print("{} on {} with {} images".format(mode, settings.dataset,
len(images)))
if shuffle:
random.shuffle(images)
for image in images:
if settings.dataset == 'coco':
image_name = image['file_name']
image_path = os.path.join(settings.data_dir, image_name)
elif settings.dataset == 'pascalvoc':
if mode == 'train' or mode == 'test':
img_path, label_path = line.split()
img_path = os.path.join(settings.data_dir, img_path)
image_path, label_path = image.split()
image_path = os.path.join(settings.data_dir, image_path)
label_path = os.path.join(settings.data_dir, label_path)
elif mode == 'infer':
img_path = os.path.join(settings.data_dir, line)
image_path = os.path.join(settings.data_dir, image)
img = Image.open(img_path)
img_width, img_height = img.size
img = Image.open(image_path)
if img.mode == 'L':
img = img.convert('RGB')
img_width, img_height = img.size
# layout: label | xmin | ymin | xmax | ymax | difficult
if mode == 'train' or mode == 'test':
if mode == 'train' or mode == 'test':
if settings.dataset == 'coco':
# layout: category_id | xmin | ymin | xmax | ymax | iscrowd | origin_coco_bbox | segmentation | area | image_id | annotation_id
bbox_labels = []
annIds = coco.getAnnIds(imgIds=image['id'])
anns = coco.loadAnns(annIds)
for ann in anns:
bbox_sample = []
# start from 1, leave 0 to background
bbox_sample.append(
float(category_ids.index(ann['category_id'])) + 1)
bbox = ann['bbox']
xmin, ymin, w, h = bbox
xmax = xmin + w
ymax = ymin + h
bbox_sample.append(float(xmin) / img_width)
bbox_sample.append(float(ymin) / img_height)
bbox_sample.append(float(xmax) / img_width)
bbox_sample.append(float(ymax) / img_height)
bbox_sample.append(float(ann['iscrowd']))
#bbox_sample.append(ann['bbox'])
#bbox_sample.append(ann['segmentation'])
#bbox_sample.append(ann['area'])
#bbox_sample.append(ann['image_id'])
#bbox_sample.append(ann['id'])
bbox_labels.append(bbox_sample)
elif settings.dataset == 'pascalvoc':
# layout: label | xmin | ymin | xmax | ymax | difficult
bbox_labels = []
root = xml.etree.ElementTree.parse(label_path).getroot()
for object in root.findall('object'):
......@@ -117,91 +188,138 @@ def _reader_creator(settings, file_list, mode, shuffle):
bbox_sample.append(difficult)
bbox_labels.append(bbox_sample)
sample_labels = bbox_labels
if mode == 'train':
if settings._apply_distort:
img = image_util.distort_image(img, settings)
if settings._apply_expand:
img, bbox_labels = image_util.expand_image(
img, bbox_labels, img_width, img_height,
settings)
batch_sampler = []
# hard-code here
batch_sampler.append(
image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9,
0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0,
1.0))
""" random crop """
sampled_bbox = image_util.generate_batch_samples(
batch_sampler, bbox_labels, img_width, img_height)
img = np.array(img)
if len(sampled_bbox) > 0:
idx = int(random.uniform(0, len(sampled_bbox)))
img, sample_labels = image_util.crop_image(
img, bbox_labels, sampled_bbox[idx], img_width,
img_height)
img = Image.fromarray(img)
img = img.resize((settings.resize_w, settings.resize_h),
Image.ANTIALIAS)
img = np.array(img)
sample_labels = bbox_labels
if mode == 'train':
mirror = int(random.uniform(0, 2))
if mirror == 1:
img = img[:, ::-1, :]
for i in xrange(len(sample_labels)):
tmp = sample_labels[i][1]
sample_labels[i][1] = 1 - sample_labels[i][3]
sample_labels[i][3] = 1 - tmp
if len(img.shape) == 3:
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 1, 0)
img = img[[2, 1, 0], :, :]
img = img.astype('float32')
img -= settings.img_mean
img = img.flatten()
img = img * 0.007843
sample_labels = np.array(sample_labels)
if mode == 'train' or mode == 'test':
if mode == 'train' and len(sample_labels) == 0: continue
yield img.astype(
'float32'
), sample_labels[:, 1:5], sample_labels[:, 0].astype(
'int32'), sample_labels[:, -1].astype('int32')
elif mode == 'infer':
yield img.astype('float32')
if settings._apply_distort:
img = image_util.distort_image(img, settings)
if settings._apply_expand:
img, bbox_labels = image_util.expand_image(
img, bbox_labels, img_width, img_height, settings)
batch_sampler = []
# hard-code here
batch_sampler.append(
image_util.sampler(1, 1, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.1, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.3, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.5, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.7, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.9, 0.0))
batch_sampler.append(
image_util.sampler(1, 50, 0.3, 1.0, 0.5, 2.0, 0.0, 1.0))
""" random crop """
sampled_bbox = image_util.generate_batch_samples(
batch_sampler, bbox_labels, img_width, img_height)
img = np.array(img)
if len(sampled_bbox) > 0:
idx = int(random.uniform(0, len(sampled_bbox)))
img, sample_labels = image_util.crop_image(
img, bbox_labels, sampled_bbox[idx], img_width,
img_height)
img = Image.fromarray(img)
img = img.resize((settings.resize_w, settings.resize_h),
Image.ANTIALIAS)
img = np.array(img)
if mode == 'train':
mirror = int(random.uniform(0, 2))
if mirror == 1:
img = img[:, ::-1, :]
for i in xrange(len(sample_labels)):
tmp = sample_labels[i][1]
sample_labels[i][1] = 1 - sample_labels[i][3]
sample_labels[i][3] = 1 - tmp
#draw_bounding_box_on_image(img, sample_labels, image_name, category_names, normalized=True)
# HWC to CHW
if len(img.shape) == 3:
img = np.swapaxes(img, 1, 2)
img = np.swapaxes(img, 1, 0)
# RBG to BGR
img = img[[2, 1, 0], :, :]
img = img.astype('float32')
img -= settings.img_mean
img = img.flatten()
img = img * 0.007843
sample_labels = np.array(sample_labels)
if mode == 'train' or mode == 'test':
if mode == 'train' and len(sample_labels) == 0: continue
if mode == 'test' and len(sample_labels) == 0: continue
yield img.astype(
'float32'
), sample_labels[:, 1:5], sample_labels[:, 0].astype(
'int32'), sample_labels[:, -1].astype('int32')
elif mode == 'infer':
yield img.astype('float32')
return reader
def draw_bounding_box_on_image(image,
sample_labels,
image_name,
category_names,
color='red',
thickness=4,
with_text=True,
normalized=True):
image = Image.fromarray(image)
draw = ImageDraw.Draw(image)
im_width, im_height = image.size
if not normalized:
im_width, im_height = 1, 1
for item in sample_labels:
label = item[0]
category_name = category_names[int(label)]
bbox = item[1:5]
xmin, ymin, xmax, ymax = bbox
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
ymin * im_height, ymax * im_height)
draw.line(
[(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)
#draw.rectangle([xmin, ymin, xmax, ymax], outline=color)
if with_text:
if image.mode == 'RGB':
draw.text((left, top), category_name, (255, 255, 0))
image.save(image_name)
def train(settings, file_list, shuffle=True):
return _reader_creator(settings, file_list, 'train', shuffle)
if settings.dataset == 'coco':
train_settings = copy.copy(settings)
if '2014' in file_list:
sub_dir = "train2014"
elif '2017' in file_list:
sub_dir = "train2017"
train_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
file_list = os.path.join(settings.data_dir, file_list)
return _reader_creator(train_settings, file_list, 'train', shuffle)
elif settings.dataset == 'pascalvoc':
return _reader_creator(settings, file_list, 'train', shuffle)
def test(settings, file_list):
return _reader_creator(settings, file_list, 'test', False)
if settings.dataset == 'coco':
test_settings = copy.copy(settings)
if '2014' in file_list:
sub_dir = "val2014"
elif '2017' in file_list:
sub_dir = "val2017"
test_settings.data_dir = os.path.join(settings.data_dir, sub_dir)
file_list = os.path.join(settings.data_dir, file_list)
return _reader_creator(test_settings, file_list, 'test', False)
elif settings.dataset == 'pascalvoc':
return _reader_creator(settings, file_list, 'test', False)
def infer(settings, file_list):
......
import paddle.v2 as paddle
import paddle
import paddle.fluid as fluid
import reader
import load_model as load_model
from mobilenet_ssd import mobile_net
from utility import add_arguments, print_arguments
import os
import time
import numpy as np
import argparse
import functools
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size', int, 32, "Minibatch size.")
add_arg('parallel', bool, True, "Whether use parallel training.")
add_arg('use_gpu', bool, True, "Whether use GPU.")
# yapf: disable
add_arg('learning_rate', float, 0.001, "Learning rate.")
add_arg('batch_size', int, 32, "Minibatch size.")
add_arg('num_passes', int, 25, "Epoch number.")
add_arg('parallel', bool, True, "Whether use parallel training.")
add_arg('use_gpu', bool, True, "Whether use GPU.")
add_arg('data_dir', str, './data/COCO17', "Root path of data")
add_arg('train_file_list', str, 'annotations/instances_train2017.json',
"train file list")
add_arg('val_file_list', str, 'annotations/instances_val2017.json',
"vaild file list")
add_arg('model_save_dir', str, 'model_COCO17', "where to save model")
add_arg('dataset', str, 'coco', "coco or pascalvoc")
add_arg(
'is_toy', int, 0,
"Is Toy for quick debug, 0 means using all data, while n means using only n sample"
)
add_arg('label_file', str, 'label_list',
"Lable file which lists all label name")
add_arg('apply_distort', bool, True, "Whether apply distort")
add_arg('apply_expand', bool, False, "Whether appley expand")
add_arg('resize_h', int, 300, "resize image size")
add_arg('resize_w', int, 300, "resize image size")
add_arg('mean_value_B', float, 127.5,
"mean value which will be subtracted") #123.68
add_arg('mean_value_G', float, 127.5,
"mean value which will be subtracted") #116.78
add_arg('mean_value_R', float, 127.5,
"mean value which will be subtracted") #103.94
def train(args,
......@@ -28,6 +53,10 @@ def train(args,
model_save_dir='model',
init_model_path=None):
image_shape = [3, data_args.resize_h, data_args.resize_w]
if data_args.dataset == 'coco':
num_classes = 81
elif data_args.dataset == 'pascalvoc':
num_classes = 21
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
gt_box = fluid.layers.data(
......@@ -45,9 +74,10 @@ def train(args,
gt_box_ = pd.read_input(gt_box)
gt_label_ = pd.read_input(gt_label)
difficult_ = pd.read_input(difficult)
locs, confs, box, box_var = mobile_net(image_, image_shape)
loss = fluid.layers.ssd_loss(locs, confs, gt_box_, gt_label_,
box, box_var)
locs, confs, box, box_var = mobile_net(num_classes, image_,
image_shape)
loss = fluid.layers.ssd_loss(locs, confs, gt_box_, gt_label_, box,
box_var)
nmsed_out = fluid.layers.detection_output(
locs, confs, box, box_var, nms_threshold=0.45)
loss = fluid.layers.reduce_sum(loss)
......@@ -57,11 +87,11 @@ def train(args,
loss, nmsed_out = pd()
loss = fluid.layers.mean(loss)
else:
locs, confs, box, box_var = mobile_net(image, image_shape)
locs, confs, box, box_var = mobile_net(num_classes, image, image_shape)
nmsed_out = fluid.layers.detection_output(
locs, confs, box, box_var, nms_threshold=0.45)
loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label,
box, box_var)
loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box,
box_var)
loss = fluid.layers.reduce_sum(loss)
test_program = fluid.default_main_program().clone(for_test=True)
......@@ -71,13 +101,20 @@ def train(args,
gt_label,
gt_box,
difficult,
21,
num_classes,
overlap_threshold=0.5,
evaluate_difficult=False,
ap_version='11point')
boundaries = [40000, 60000]
values = [0.001, 0.0005, 0.00025]
ap_version='integral')
if data_args.dataset == 'coco':
# learning rate decay in 12, 19 pass, respectively
if '2014' in train_file_list:
boundaries = [82783 / batch_size * 12, 82783 / batch_size * 19]
elif '2017' in train_file_list:
boundaries = [118287 / batch_size * 12, 118287 / batch_size * 19]
elif data_args.dataset == 'pascalvoc':
boundaries = [40000, 60000]
values = [learning_rate, learning_rate * 0.5, learning_rate * 0.25]
optimizer = fluid.optimizer.RMSProp(
learning_rate=fluid.layers.piecewise_decay(boundaries, values),
regularization=fluid.regularizer.L2Decay(0.00005), )
......@@ -88,8 +125,8 @@ def train(args,
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
load_model.load_and_set_vars(place)
#load_model.load_paddlev1_vars(place)
#load_model.load_and_set_vars(place)
load_model.load_paddlev1_vars(place)
train_reader = paddle.batch(
reader.train(data_args, train_file_list), batch_size=batch_size)
test_reader = paddle.batch(
......@@ -108,16 +145,23 @@ def train(args,
print("Test {0}, map {1}".format(pass_id, test_map[0]))
for pass_id in range(num_passes):
start_time = time.time()
prev_start_time = start_time
end_time = 0
for batch_id, data in enumerate(train_reader()):
prev_start_time = start_time
start_time = time.time()
#print("Batch {} start at {:.2f}".format(batch_id, start_time))
loss_v = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[loss])
end_time = time.time()
if batch_id % 20 == 0:
print("Pass {0}, batch {1}, loss {2}"
.format(pass_id, batch_id, loss_v[0]))
print("Pass {0}, batch {1}, loss {2}, time {3}".format(
pass_id, batch_id, loss_v[0], start_time - prev_start_time))
test(pass_id)
if pass_id % 10 == 0:
if pass_id % 10 == 0 or pass_id == num_passes - 1:
model_path = os.path.join(model_save_dir, str(pass_id))
print 'save models to %s' % (model_path)
fluid.io.save_inference_model(model_path, ['image'], [nmsed_out],
......@@ -128,17 +172,21 @@ if __name__ == '__main__':
args = parser.parse_args()
print_arguments(args)
data_args = reader.Settings(
data_dir='./data',
label_file='label_list',
apply_distort=True,
apply_expand=True,
resize_h=300,
resize_w=300,
mean_value=[127.5, 127.5, 127.5])
train(args,
train_file_list='./data/trainval.txt',
val_file_list='./data/test.txt',
data_args=data_args,
learning_rate=0.001,
batch_size=args.batch_size,
num_passes=300)
dataset=args.dataset, # coco or pascalvoc
toy=args.is_toy,
data_dir=args.data_dir,
label_file=args.label_file,
apply_distort=args.apply_distort,
apply_expand=args.apply_expand,
resize_h=args.resize_h,
resize_w=args.resize_w,
mean_value=[args.mean_value_B, args.mean_value_G, args.mean_value_R])
train(
args,
train_file_list=args.train_file_list,
val_file_list=args.val_file_list,
data_args=data_args,
learning_rate=args.learning_rate,
batch_size=args.batch_size,
num_passes=args.num_passes,
model_save_dir=args.model_save_dir)
......@@ -30,32 +30,28 @@ class PolicyGradient:
acts = fluid.layers.data(name='acts', shape=[1], dtype='int64')
vt = fluid.layers.data(name='vt', shape=[1], dtype='float32')
# fc1
fc1 = fluid.layers.fc(
input=obs,
size=10,
act="tanh" # tanh activation
)
fc1 = fluid.layers.fc(input=obs, size=10, act="tanh") # tanh activation
# fc2
self.all_act_prob = fluid.layers.fc(input=fc1,
size=self.n_actions,
act="softmax")
all_act_prob = fluid.layers.fc(input=fc1,
size=self.n_actions,
act="softmax")
self.inferece_program = fluid.defaul_main_program().clone()
# to maximize total reward (log_p * R) is to minimize -(log_p * R)
neg_log_prob = fluid.layers.cross_entropy(
input=self.all_act_prob,
label=acts) # this is negative log of chosen action
neg_log_prob_weight = fluid.layers.elementwise_mul(x=neg_log_prob, y=vt)
loss = fluid.layers.reduce_mean(
x=neg_log_prob_weight) # reward guided loss
neg_log_prob_weight) # reward guided loss
sgd_optimizer = fluid.optimizer.SGD(self.lr)
sgd_optimizer.minimize(loss)
self.exe.run(fluid.default_startup_program())
def choose_action(self, observation):
prob_weights = self.exe.run(
fluid.default_main_program().prune(self.all_act_prob),
feed={"obs": observation[np.newaxis, :]},
fetch_list=[self.all_act_prob])
prob_weights = self.exe.run(self.inferece_program,
feed={"obs": observation[np.newaxis, :]},
fetch_list=[self.all_act_prob])
prob_weights = np.array(prob_weights[0])
action = np.random.choice(
range(prob_weights.shape[1]),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册