提交 f3b1bb5a 编写于 作者: C caoying03

refine DSSM comments.

上级 77d2bf77
......@@ -9,25 +9,25 @@ from utils import logger, ModelType, ModelArch, load_dic
parser = argparse.ArgumentParser(description="PaddlePaddle DSSM infer")
parser.add_argument(
'--model_path',
"--model_path",
type=str,
required=True,
help="path of model parameters file")
parser.add_argument(
'-i',
'--data_path',
"-i",
"--data_path",
type=str,
required=True,
help="path of the dataset to infer")
parser.add_argument(
'-o',
'--prediction_output_path',
"-o",
"--prediction_output_path",
type=str,
required=True,
help="path to output the prediction")
parser.add_argument(
'-y',
'--model_type',
"-y",
"--model_type",
type=int,
required=True,
default=ModelType.CLASSIFICATION_MODE,
......@@ -36,45 +36,45 @@ parser.add_argument(
(ModelType.CLASSIFICATION_MODE, ModelType.RANK_MODE,
ModelType.REGRESSION_MODE))
parser.add_argument(
'-s',
'--source_dic_path',
"-s",
"--source_dic_path",
type=str,
required=False,
help="path of the source's word dic")
parser.add_argument(
'--target_dic_path',
"--target_dic_path",
type=str,
required=False,
help=("path of the target's word dictionary, "
"if not set, the `source_dic_path` will be used"))
parser.add_argument(
'-a',
'--model_arch',
"-a",
"--model_arch",
type=int,
required=True,
default=ModelArch.CNN_MODE,
help="model architecture, %d for CNN, %d for FC, %d for RNN" %
(ModelArch.CNN_MODE, ModelArch.FC_MODE, ModelArch.RNN_MODE))
parser.add_argument(
'--share_network_between_source_target',
"--share_network_between_source_target",
type=distutils.util.strtobool,
default=False,
help="whether to share network parameters between source and target")
parser.add_argument(
'--share_embed',
"--share_embed",
type=distutils.util.strtobool,
default=False,
help="whether to share word embedding between source and target")
parser.add_argument(
'--dnn_dims',
"--dnn_dims",
type=str,
default='256,128,64,32',
help=("dimentions of dnn layers, default is '256,128,64,32', "
default="256,128,64,32",
help=("dimentions of dnn layers, default is `256,128,64,32`, "
"which means create a 4-layer dnn, "
"demention of each layer is 256, 128, 64 and 32"))
parser.add_argument(
'-c',
'--class_num',
"-c",
"--class_num",
type=int,
default=0,
help="number of categories for classification task.")
......@@ -83,9 +83,10 @@ args = parser.parse_args()
args.model_type = ModelType(args.model_type)
args.model_arch = ModelArch(args.model_arch)
if args.model_type.is_classification():
assert args.class_num > 1, "--class_num should be set in classification task."
assert args.class_num > 1, ("The parameter class_num should be set "
"in classification task.")
layer_dims = map(int, args.dnn_dims.split(','))
layer_dims = map(int, args.dnn_dims.split(","))
args.target_dic_path = args.source_dic_path if not args.target_dic_path \
else args.target_dic_path
......@@ -94,8 +95,6 @@ paddle.init(use_gpu=False, trainer_count=1)
class Inferer(object):
def __init__(self, param_path):
logger.info("create DSSM model")
prediction = DSSM(
dnn_dims=layer_dims,
vocab_sizes=[
......@@ -110,14 +109,13 @@ class Inferer(object):
is_infer=True)()
# load parameter
logger.info("load model parameters from %s" % param_path)
logger.info("Load the trained model from %s." % param_path)
self.parameters = paddle.parameters.Parameters.from_tar(
open(param_path, 'r'))
open(param_path, "r"))
self.inferer = paddle.inference.Inference(
output_layer=prediction, parameters=self.parameters)
def infer(self, data_path):
logger.info("infer data...")
dataset = reader.Dataset(
train_path=data_path,
test_path=None,
......@@ -125,19 +123,20 @@ class Inferer(object):
target_dic_path=args.target_dic_path,
model_type=args.model_type, )
infer_reader = paddle.batch(dataset.infer, batch_size=1000)
logger.warning('write predictions to %s' % args.prediction_output_path)
logger.warning("Write predictions to %s." % args.prediction_output_path)
output_f = open(args.prediction_output_path, 'w')
output_f = open(args.prediction_output_path, "w")
for id, batch in enumerate(infer_reader()):
res = self.inferer.infer(input=batch)
predictions = [' '.join(map(str, x)) for x in res]
predictions = [" ".join(map(str, x)) for x in res]
assert len(batch) == len(predictions), (
"predict error, %d inputs, "
"but %d predictions") % (len(batch), len(predictions))
output_f.write('\n'.join(map(str, predictions)) + '\n')
"Error! %d inputs are given, "
"but only %d predictions are returned.") % (len(batch),
len(predictions))
output_f.write("\n".join(map(str, predictions)) + "\n")
if __name__ == '__main__':
if __name__ == "__main__":
inferer = Inferer(args.model_path)
inferer.infer(args.data_path)
......@@ -13,26 +13,33 @@ class DSSM(object):
class_num=None,
share_embed=False,
is_infer=False):
'''
@dnn_dims: list of int
dimentions of each layer in semantic vector generator.
@vocab_sizes: 2-d tuple
size of both left and right items.
@model_type: int
type of task, should be 'rank: 0', 'regression: 1' or 'classification: 2'
@model_arch: int
model architecture
@share_semantic_generator: bool
whether to share the semantic vector generator for both left and right.
@share_embed: bool
whether to share the embeddings between left and right.
@class_num: int
number of categories.
'''
"""
:param dnn_dims: The dimention of each layer in the semantic vector
generator.
:type dnn_dims: list of int
:param vocab_sizes: The size of left and right items.
:type vocab_sizes: A list having 2 elements.
:param model_type: The type of task to train the DSSM model. The value
should be "rank: 0", "regression: 1" or
"classification: 2".
:type model_type: int
:param model_arch: A value indicating the model architecture to use.
:type model_arch: int
:param share_semantic_generator: A flag indicating whether to share the
semantic vector between the left and
the right item.
:type share_semantic_generator: bool
:param share_embed: A floag indicating whether to share the embeddings
between the left and the right item.
:type share_embed: bool
:param class_num: The number of categories.
:type class_num: int
"""
assert len(vocab_sizes) == 2, (
"vocab_sizes specify the sizes left and right inputs, "
"and dim should be 2.")
assert len(dnn_dims) > 1, "more than two layers is needed."
"The vocab_sizes specifying the sizes left and right inputs. "
"Its dimension should be 2.")
assert len(dnn_dims) > 1, ("In the DNN model, more than two layers "
"are needed.")
self.dnn_dims = dnn_dims
self.vocab_sizes = vocab_sizes
......@@ -42,91 +49,89 @@ class DSSM(object):
self.model_arch = ModelArch(model_arch)
self.class_num = class_num
self.is_infer = is_infer
logger.warning("build DSSM model with config of %s, %s" %
logger.warning("Build DSSM model with config of %s, %s" %
(self.model_type, self.model_arch))
logger.info("vocabulary sizes: %s" % str(self.vocab_sizes))
logger.info("The vocabulary size is : %s" % str(self.vocab_sizes))
# bind model architecture
_model_arch = {
'cnn': self.create_cnn,
'fc': self.create_fc,
'rnn': self.create_rnn,
"cnn": self.create_cnn,
"fc": self.create_fc,
"rnn": self.create_rnn,
}
def _model_arch_creater(emb, prefix=''):
def _model_arch_creater(emb, prefix=""):
sent_vec = _model_arch.get(str(model_arch))(emb, prefix)
dnn = self.create_dnn(sent_vec, prefix)
return dnn
self.model_arch_creater = _model_arch_creater
# build model type
_model_type = {
'classification': self._build_classification_model,
'rank': self._build_rank_model,
'regression': self._build_regression_model,
"classification": self._build_classification_model,
"rank": self._build_rank_model,
"regression": self._build_regression_model,
}
print 'model type: ', str(self.model_type)
print("model type: ", str(self.model_type))
self.model_type_creater = _model_type[str(self.model_type)]
def __call__(self):
return self.model_type_creater()
def create_embedding(self, input, prefix=''):
'''
Create an embedding table whose name has a `prefix`.
'''
logger.info("create embedding table [%s] which dimention is %d" %
def create_embedding(self, input, prefix=""):
"""
Create word embedding. The `prefix` is added in front of the name of
embedding"s learnable parameter.
"""
logger.info("Create embedding table [%s] whose dimention is %d. " %
(prefix, self.dnn_dims[0]))
emb = paddle.layer.embedding(
input=input,
size=self.dnn_dims[0],
param_attr=ParamAttr(name='%s_emb.w' % prefix))
param_attr=ParamAttr(name="%s_emb.w" % prefix))
return emb
def create_fc(self, emb, prefix=''):
'''
def create_fc(self, emb, prefix=""):
"""
A multi-layer fully connected neural networks.
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between
more than one `fc` parts.
'''
:param emb: The output of the embedding layer
:type emb: paddle.layer
:param prefix: A prefix will be added to the layers' names.
:type prefix: str
"""
_input_layer = paddle.layer.pooling(
input=emb, pooling_type=paddle.pooling.Max())
fc = paddle.layer.fc(
input=_input_layer,
size=self.dnn_dims[1],
param_attr=ParamAttr(name='%s_fc.w' % prefix),
param_attr=ParamAttr(name="%s_fc.w" % prefix),
bias_attr=ParamAttr(name="%s_fc.b" % prefix, initial_std=0.))
return fc
def create_rnn(self, emb, prefix=''):
'''
def create_rnn(self, emb, prefix=""):
"""
A GRU sentence vector learner.
'''
"""
gru = paddle.networks.simple_gru(
input=emb,
size=self.dnn_dims[1],
mixed_param_attr=ParamAttr(name='%s_gru_mixed.w' % prefix),
mixed_param_attr=ParamAttr(name="%s_gru_mixed.w" % prefix),
mixed_bias_param_attr=ParamAttr(name="%s_gru_mixed.b" % prefix),
gru_param_attr=ParamAttr(name='%s_gru.w' % prefix),
gru_param_attr=ParamAttr(name="%s_gru.w" % prefix),
gru_bias_attr=ParamAttr(name="%s_gru.b" % prefix))
sent_vec = paddle.layer.last_seq(gru)
return sent_vec
def create_cnn(self, emb, prefix=''):
'''
def create_cnn(self, emb, prefix=""):
"""
A multi-layer CNN.
@emb: paddle.layer
output of the embedding layer
@prefix: str
prefix of layers' names, used to share parameters between
more than one `cnn` parts.
'''
:param emb: The word embedding.
:type emb: paddle.layer
:param prefix: The prefix will be added to of layers' names.
:type prefix: str
"""
def create_conv(context_len, hidden_size, prefix):
key = "%s_%d_%d" % (prefix, context_len, hidden_size)
......@@ -135,15 +140,15 @@ class DSSM(object):
context_len=context_len,
hidden_size=hidden_size,
# set parameter attr for parameter sharing
context_proj_param_attr=ParamAttr(name=key + 'contex_proj.w'),
fc_param_attr=ParamAttr(name=key + '_fc.w'),
fc_bias_attr=ParamAttr(name=key + '_fc.b'),
pool_bias_attr=ParamAttr(name=key + '_pool.b'))
context_proj_param_attr=ParamAttr(name=key + "contex_proj.w"),
fc_param_attr=ParamAttr(name=key + "_fc.w"),
fc_bias_attr=ParamAttr(name=key + "_fc.b"),
pool_bias_attr=ParamAttr(name=key + "_pool.b"))
return conv
logger.info('create a sequence_conv_pool which context width is 3')
logger.info("create a sequence_conv_pool which context width is 3")
conv_3 = create_conv(3, self.dnn_dims[1], "cnn")
logger.info('create a sequence_conv_pool which context width is 4')
logger.info("create a sequence_conv_pool which context width is 4")
conv_4 = create_conv(4, self.dnn_dims[1], "cnn")
return conv_3, conv_4
......@@ -160,8 +165,8 @@ class DSSM(object):
input=_input_layer,
size=dim,
act=paddle.activation.Tanh(),
param_attr=ParamAttr(name='%s.w' % name),
bias_attr=ParamAttr(name='%s.b' % name, initial_std=0.))
param_attr=ParamAttr(name="%s.w" % name),
bias_attr=ParamAttr(name="%s.b" % name, initial_std=0.))
_input_layer = fc
return _input_layer
......@@ -178,7 +183,7 @@ class DSSM(object):
is_classification=False)
def _build_rank_model(self):
'''
"""
Build a pairwise rank model, and the cost is returned.
A pairwise rank model has 3 inputs:
......@@ -187,26 +192,26 @@ class DSSM(object):
- right_target sentence
- label, 1 if left_target should be sorted in front of
right_target, otherwise 0.
'''
"""
logger.info("build rank model")
assert self.model_type.is_rank()
source = paddle.layer.data(
name='source_input',
name="source_input",
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
left_target = paddle.layer.data(
name='left_target_input',
name="left_target_input",
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
right_target = paddle.layer.data(
name='right_target_input',
name="right_target_input",
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
if not self.is_infer:
label = paddle.layer.data(
name='label_input', type=paddle.data_type.integer_value(1))
name="label_input", type=paddle.data_type.integer_value(1))
prefixs = '_ _ _'.split(
) if self.share_semantic_generator else 'source target target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target target'.split()
prefixs = "_ _ _".split(
) if self.share_semantic_generator else "source target target".split()
embed_prefixs = "_ _".split(
) if self.share_embed else "source target target".split()
word_vecs = []
for id, input in enumerate([source, left_target, right_target]):
......@@ -218,9 +223,9 @@ class DSSM(object):
x = self.model_arch_creater(input, prefix=prefixs[id])
semantics.append(x)
# cossim score of source and left_target
# The cosine similarity score of source and left_target.
left_score = paddle.layer.cos_sim(semantics[0], semantics[1])
# cossim score of source and right target
# The cosine similarity score of source and right target.
right_score = paddle.layer.cos_sim(semantics[0], semantics[2])
if not self.is_infer:
......@@ -233,34 +238,33 @@ class DSSM(object):
return right_score
def _build_classification_or_regression_model(self, is_classification):
'''
"""
Build a classification/regression model, and the cost is returned.
A Classification has 3 inputs:
The classification/regression task expects 3 inputs:
- source sentence
- target sentence
- classification label
'''
"""
if is_classification:
# prepare inputs.
assert self.class_num
source = paddle.layer.data(
name='source_input',
name="source_input",
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[0]))
target = paddle.layer.data(
name='target_input',
name="target_input",
type=paddle.data_type.integer_value_sequence(self.vocab_sizes[1]))
label = paddle.layer.data(
name='label_input',
name="label_input",
type=paddle.data_type.integer_value(self.class_num)
if is_classification else paddle.data_type.dense_vector(1))
prefixs = '_ _'.split(
) if self.share_semantic_generator else 'source target'.split()
embed_prefixs = '_ _'.split(
) if self.share_embed else 'source target'.split()
prefixs = "_ _".split(
) if self.share_semantic_generator else "source target".split()
embed_prefixs = "_ _".split(
) if self.share_embed else "source target".split()
word_vecs = []
for id, input in enumerate([source, target]):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册