提交 f35eb81f 编写于 作者: P pakchoi

add test file

上级 6f06bb62
TBD # NCE加速词向量训练
## 背景介绍
在自然语言处理领域中,传统做法通常使用one-hot向量来表示词,比如词典为['我', '你', '喜欢'],可以用[1,0,0]、[0,1,0]和[0,0,1]这三个向量分别表示'我'、'你'和'喜欢'。这种表示方式比较简洁,但是当词表很大时,容易产生维度爆炸问题;而且任意两个词的向量是正交的,向量包含的信息有限。为了避免或减轻one-hot表示的缺点,目前通常使用词向量来取代one-hot表示,词向量也就是word embedding,即使用一个低维稠密的实向量取代高维稀疏的one-hot向量。训练词向量的方法有很多种,神经网络模型是其中之一,包括CBOW、Skip-gram等,这些模型本质上都是一个分类模型,当词表较大即类别较多时,传统的softmax将非常消耗时间。PaddlePaddle提供了Hsigmoid Layer、NCE Layer,来加速模型的训练过程。本文主要介绍如何使用Hsigmoid Layer来加速训练,词向量相关内容请查阅PaddlePaddle Book中的[词向量章节](https://github.com/PaddlePaddle/book/tree/develop/04.word2vec)
## NCE Layer
NCE Layer引用自论文\[[1](#参考文献)\],NCE是指Noise-contrastive estimation,原理是通过
## 参考文献
1. Gutmann, M., & Hyvärinen, A. (2010). [Noise-contrastive estimation: A new estimation principle for unnormalized statistical models](http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf). In AISTATS (Vol. 1, No. 2, p. 6).
# -*- encoding:utf-8 -*-
import numpy as np
import glob
import gzip
import paddle.v2 as paddle
from nce_conf import network_conf
def main():
paddle.init(use_gpu=False, trainer_count=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
prediction_layer = network_conf(
is_train=False,
hidden_size=128,
embedding_size=512,
dict_size=dict_size)
models_list = glob.glob('./models/*')
models_list = sorted(models_list)
with gzip.open(models_list[-1], 'r') as f:
parameters = paddle.parameters.Parameters.from_tar(f)
idx_word_dict = dict((v, k) for k, v in word_dict.items())
batch_size = 64
batch_ins = []
ins_iter = paddle.dataset.imikolov.test(word_dict, 5)
infer_data = []
infer_data_label = []
for item in paddle.dataset.imikolov.test(word_dict, 5)():
infer_data.append((item[:4]))
infer_data_label.append(item[4])
# Choose 100 samples from the test set to show how to infer.
if len(infer_data_label) == 100:
break
feeding = {
'firstw': 0,
'secondw': 1,
'thirdw': 2,
'fourthw': 3,
'fifthw': 4
}
predictions = paddle.infer(
output_layer=prediction_layer,
parameters=parameters,
input=infer_data,
feeding=feeding,
field=['value'])
for i, (prob, data,
label) in enumerate(zip(predictions, infer_data, infer_data_label)):
print '--------------------------'
print "No.%d Input: " % (i+1) + \
idx_word_dict[data[0]] + ' ' + \
idx_word_dict[data[1]] + ' ' + \
idx_word_dict[data[2]] + ' ' + \
idx_word_dict[data[3]]
print 'Ground Truth Output: ' + idx_word_dict[label]
print 'Predict Output: ' + idx_word_dict[prob.argsort(
kind='heapsort', axis=0)[-1]]
print
if __name__ == '__main__':
main()
# -*- encoding:utf-8 -*-
import math
import paddle.v2 as paddle
def network_conf(hidden_size, embedding_size, dict_size, is_train):
first_word = paddle.layer.data(
name="firstw", type=paddle.data_type.integer_value(dict_size))
second_word = paddle.layer.data(
name="secondw", type=paddle.data_type.integer_value(dict_size))
third_word = paddle.layer.data(
name="thirdw", type=paddle.data_type.integer_value(dict_size))
fourth_word = paddle.layer.data(
name="fourthw", type=paddle.data_type.integer_value(dict_size))
next_word = paddle.layer.data(
name="fifthw", type=paddle.data_type.integer_value(dict_size))
embed_param_attr = paddle.attr.Param(
name="_proj", initial_std=0.001, learning_rate=1, l2_rate=0)
first_embedding = paddle.layer.embedding(
input=first_word, size=embedding_size, param_attr=embed_param_attr)
second_embedding = paddle.layer.embedding(
input=second_word, size=embedding_size, param_attr=embed_param_attr)
third_embedding = paddle.layer.embedding(
input=third_word, size=embedding_size, param_attr=embed_param_attr)
fourth_embedding = paddle.layer.embedding(
input=fourth_word, size=embedding_size, param_attr=embed_param_attr)
context_embedding = paddle.layer.concat(input=[
first_embedding, second_embedding, third_embedding, fourth_embedding
])
hidden_layer = paddle.layer.fc(
input=context_embedding,
size=hidden_size,
act=paddle.activation.Tanh(),
bias_attr=paddle.attr.Param(learning_rate=1),
param_attr=paddle.attr.Param(
initial_std=1. / math.sqrt(embedding_size * 8), learning_rate=1))
if is_train == True:
cost = paddle.layer.nce(
input=hidden_layer,
label=next_word,
num_classes=dict_size,
param_attr=paddle.attr.Param(name='nce_w'),
bias_attr=paddle.attr.Param(name='nce_b'),
act=paddle.activation.Sigmoid(),
num_neg_samples=25,
neg_distribution=None)
return cost
else:
with paddle.layer.mixed(
size=dict_size,
act=paddle.activation.Softmax(),
bias_attr=paddle.attr.Param(name='nce_b')) as prediction:
prediction += paddle.layer.trans_full_matrix_projection(
input=hidden_layer, param_attr=paddle.attr.Param(name='nce_w'))
return prediction
# -*- encoding:utf-8 -*-
import paddle.v2 as paddle
import gzip
from nce_conf import network_conf
def main():
paddle.init(use_gpu=False, trainer_count=1)
word_dict = paddle.dataset.imikolov.build_dict()
dict_size = len(word_dict)
cost = network_conf(
is_train=True, hidden_size=128, embedding_size=512, dict_size=dict_size)
parameters = paddle.parameters.create(cost)
adagrad = paddle.optimizer.Adam(learning_rate=1e-4)
trainer = paddle.trainer.SGD(cost, parameters, adagrad)
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1000 == 0:
print "Pass %d, Batch %d, Cost %f" % (
event.pass_id, event.batch_id, event.cost)
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
paddle.batch(paddle.dataset.imikolov.test(word_dict, 5), 64))
print "Test here.. Pass %d, Cost %f" % (event.pass_id, result.cost)
model_name = "./models/model_pass_%05d.tar.gz" % event.pass_id
print "Save model into %s ..." % model_name
with gzip.open(model_name, 'w') as f:
parameters.to_tar(f)
feeding = {
'firstw': 0,
'secondw': 1,
'thirdw': 2,
'fourthw': 3,
'fifthw': 4
}
trainer.train(
paddle.batch(paddle.dataset.imikolov.train(word_dict, 5), 64),
num_passes=1000,
event_handler=event_handler,
feeding=feeding)
if __name__ == '__main__':
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册