Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f268a8d4
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f268a8d4
编写于
4月 16, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix python code line length.
上级
bb6a9606
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
161 addition
and
66 deletion
+161
-66
PaddleCV/yolov3/image_utils.py
PaddleCV/yolov3/image_utils.py
+34
-9
PaddleCV/yolov3/models/darknet.py
PaddleCV/yolov3/models/darknet.py
+27
-10
PaddleCV/yolov3/models/yolov3.py
PaddleCV/yolov3/models/yolov3.py
+20
-7
PaddleCV/yolov3/reader.py
PaddleCV/yolov3/reader.py
+45
-18
PaddleCV/yolov3/train.py
PaddleCV/yolov3/train.py
+17
-7
PaddleCV/yolov3/utility.py
PaddleCV/yolov3/utility.py
+18
-15
未找到文件。
PaddleCV/yolov3/image_utils.py
浏览文件 @
f268a8d4
...
...
@@ -51,7 +51,14 @@ def random_distort(img):
return
img
def
random_crop
(
img
,
boxes
,
labels
,
scores
,
scales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
max_trial
=
50
):
def
random_crop
(
img
,
boxes
,
labels
,
scores
,
scales
=
[
0.3
,
1.0
],
max_ratio
=
2.0
,
constraints
=
None
,
max_trial
=
50
):
if
len
(
boxes
)
==
0
:
return
img
,
boxes
...
...
@@ -90,10 +97,12 @@ def random_crop(img, boxes, labels, scores, scales=[0.3, 1.0], max_ratio=2.0, co
while
crops
:
crop
=
crops
.
pop
(
np
.
random
.
randint
(
0
,
len
(
crops
)))
crop_boxes
,
crop_labels
,
crop_scores
,
box_num
=
box_utils
.
box_crop
(
boxes
,
labels
,
scores
,
crop
,
(
w
,
h
))
crop_boxes
,
crop_labels
,
crop_scores
,
box_num
=
\
box_utils
.
box_crop
(
boxes
,
labels
,
scores
,
crop
,
(
w
,
h
))
if
box_num
<
1
:
continue
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
crop
[
1
]
+
crop
[
3
])).
resize
(
img
.
size
,
Image
.
LANCZOS
)
img
=
img
.
crop
((
crop
[
0
],
crop
[
1
],
crop
[
0
]
+
crop
[
2
],
crop
[
1
]
+
crop
[
3
])).
resize
(
img
.
size
,
Image
.
LANCZOS
)
img
=
np
.
asarray
(
img
)
return
img
,
crop_boxes
,
crop_labels
,
crop_scores
img
=
np
.
asarray
(
img
)
...
...
@@ -118,10 +127,16 @@ def random_interp(img, size, interp=None):
h
,
w
,
_
=
img
.
shape
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
interp
)
img
=
cv2
.
resize
(
img
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
interp
)
return
img
def
random_expand
(
img
,
gtboxes
,
max_ratio
=
4.
,
fill
=
None
,
keep_ratio
=
True
,
thresh
=
0.5
):
def
random_expand
(
img
,
gtboxes
,
max_ratio
=
4.
,
fill
=
None
,
keep_ratio
=
True
,
thresh
=
0.5
):
if
random
.
random
()
>
thresh
:
return
img
,
gtboxes
...
...
@@ -153,13 +168,21 @@ def random_expand(img, gtboxes, max_ratio=4., fill=None, keep_ratio=True, thresh
return
out_img
.
astype
(
'uint8'
),
gtboxes
def
shuffle_gtbox
(
gtbox
,
gtlabel
,
gtscore
):
gt
=
np
.
concatenate
([
gtbox
,
gtlabel
[:,
np
.
newaxis
],
gtscore
[:,
np
.
newaxis
]],
axis
=
1
)
gt
=
np
.
concatenate
([
gtbox
,
gtlabel
[:,
np
.
newaxis
],
gtscore
[:,
np
.
newaxis
]],
axis
=
1
)
idx
=
np
.
arange
(
gt
.
shape
[
0
])
np
.
random
.
shuffle
(
idx
)
gt
=
gt
[
idx
,
:]
return
gt
[:,
:
4
],
gt
[:,
4
],
gt
[:,
5
]
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
gtscores1
,
img2
,
gtboxes2
,
gtlabels2
,
gtscores2
):
def
image_mixup
(
img1
,
gtboxes1
,
gtlabels1
,
gtscores1
,
img2
,
gtboxes2
,
gtlabels2
,
gtscores2
):
factor
=
np
.
random
.
beta
(
1.5
,
1.5
)
factor
=
max
(
0.0
,
min
(
1.0
,
factor
))
if
factor
>=
1.0
:
...
...
@@ -173,7 +196,8 @@ def image_mixup(img1, gtboxes1, gtlabels1, gtscores1, img2, gtboxes2, gtlabels2,
w
=
max
(
img1
.
shape
[
1
],
img2
.
shape
[
1
])
img
=
np
.
zeros
((
h
,
w
,
img1
.
shape
[
2
]),
'float32'
)
img
[:
img1
.
shape
[
0
],
:
img1
.
shape
[
1
],
:]
=
img1
.
astype
(
'float32'
)
*
factor
img
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
+=
img2
.
astype
(
'float32'
)
*
(
1.0
-
factor
)
img
[:
img2
.
shape
[
0
],
:
img2
.
shape
[
1
],
:]
+=
\
img2
.
astype
(
'float32'
)
*
(
1.0
-
factor
)
gtboxes
=
np
.
zeros_like
(
gtboxes1
)
gtlabels
=
np
.
zeros_like
(
gtlabels1
)
gtscores
=
np
.
zeros_like
(
gtscores1
)
...
...
@@ -208,7 +232,8 @@ def image_mixup(img1, gtboxes1, gtlabels1, gtscores1, img2, gtboxes2, gtlabels2,
def
image_augment
(
img
,
gtboxes
,
gtlabels
,
gtscores
,
size
,
means
=
None
):
img
=
random_distort
(
img
)
img
,
gtboxes
=
random_expand
(
img
,
gtboxes
,
fill
=
means
)
img
,
gtboxes
,
gtlabels
,
gtscores
=
random_crop
(
img
,
gtboxes
,
gtlabels
,
gtscores
)
img
,
gtboxes
,
gtlabels
,
gtscores
=
\
random_crop
(
img
,
gtboxes
,
gtlabels
,
gtscores
)
img
=
random_interp
(
img
,
size
)
img
,
gtboxes
=
random_flip
(
img
,
gtboxes
)
gtboxes
,
gtlabels
,
gtscores
=
shuffle_gtbox
(
gtboxes
,
gtlabels
,
gtscores
)
...
...
PaddleCV/yolov3/models/darknet.py
浏览文件 @
f268a8d4
...
...
@@ -55,7 +55,13 @@ def conv_bn_layer(input,
out
=
fluid
.
layers
.
leaky_relu
(
x
=
out
,
alpha
=
0.1
)
return
out
def
downsample
(
input
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
is_test
=
True
,
name
=
None
):
def
downsample
(
input
,
ch_out
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
is_test
=
True
,
name
=
None
):
return
conv_bn_layer
(
input
,
ch_out
=
ch_out
,
filter_size
=
filter_size
,
...
...
@@ -65,15 +71,19 @@ def downsample(input, ch_out, filter_size=3, stride=2, padding=1, is_test=True,
name
=
name
)
def
basicblock
(
input
,
ch_out
,
is_test
=
True
,
name
=
None
):
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
is_test
=
is_test
,
name
=
name
+
".0"
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
is_test
=
is_test
,
name
=
name
+
".1"
)
conv1
=
conv_bn_layer
(
input
,
ch_out
,
1
,
1
,
0
,
is_test
=
is_test
,
name
=
name
+
".0"
)
conv2
=
conv_bn_layer
(
conv1
,
ch_out
*
2
,
3
,
1
,
1
,
is_test
=
is_test
,
name
=
name
+
".1"
)
out
=
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
)
return
out
def
layer_warp
(
block_func
,
input
,
ch_out
,
count
,
is_test
=
True
,
name
=
None
):
res_out
=
block_func
(
input
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.0'
.
format
(
name
))
res_out
=
block_func
(
input
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.0'
.
format
(
name
))
for
j
in
range
(
1
,
count
):
res_out
=
block_func
(
res_out
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.{}'
.
format
(
name
,
j
))
res_out
=
block_func
(
res_out
,
ch_out
,
is_test
=
is_test
,
name
=
'{}.{}'
.
format
(
name
,
j
))
return
res_out
DarkNet_cfg
=
{
...
...
@@ -83,14 +93,21 @@ DarkNet_cfg = {
def
add_DarkNet53_conv_body
(
body_input
,
is_test
=
True
):
stages
,
block_func
=
DarkNet_cfg
[
53
]
stages
=
stages
[
0
:
5
]
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
"yolo_input"
)
downsample_
=
downsample
(
conv1
,
ch_out
=
conv1
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"yolo_input.downsample"
)
conv1
=
conv_bn_layer
(
body_input
,
ch_out
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
"yolo_input"
)
downsample_
=
downsample
(
conv1
,
ch_out
=
conv1
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"yolo_input.downsample"
)
blocks
=
[]
for
i
,
stage
in
enumerate
(
stages
):
block
=
layer_warp
(
block_func
,
downsample_
,
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
,
name
=
"stage.{}"
.
format
(
i
))
block
=
layer_warp
(
block_func
,
downsample_
,
32
*
(
2
**
i
),
stage
,
is_test
=
is_test
,
name
=
"stage.{}"
.
format
(
i
))
blocks
.
append
(
block
)
if
i
<
len
(
stages
)
-
1
:
# do not downsaple in the last stage
downsample_
=
downsample
(
block
,
ch_out
=
block
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"stage.{}.downsample"
.
format
(
i
))
downsample_
=
downsample
(
block
,
ch_out
=
block
.
shape
[
1
]
*
2
,
is_test
=
is_test
,
name
=
"stage.{}.downsample"
.
format
(
i
))
return
blocks
[
-
1
:
-
4
:
-
1
]
PaddleCV/yolov3/models/yolov3.py
浏览文件 @
f268a8d4
...
...
@@ -27,13 +27,22 @@ from .darknet import add_DarkNet53_conv_body
from
.darknet
import
conv_bn_layer
def
yolo_detection_block
(
input
,
channel
,
is_test
=
True
,
name
=
None
):
assert
channel
%
2
==
0
,
"channel {} cannot be divided by 2"
.
format
(
channel
)
assert
channel
%
2
==
0
,
\
"channel {} cannot be divided by 2"
.
format
(
channel
)
conv
=
input
for
j
in
range
(
2
):
conv
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.{}.0'
.
format
(
name
,
j
))
conv
=
conv_bn_layer
(
conv
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.{}.1'
.
format
(
name
,
j
))
route
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.2'
.
format
(
name
))
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.tip'
.
format
(
name
))
conv
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.{}.0'
.
format
(
name
,
j
))
conv
=
conv_bn_layer
(
conv
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.{}.1'
.
format
(
name
,
j
))
route
=
conv_bn_layer
(
conv
,
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
is_test
=
is_test
,
name
=
'{}.2'
.
format
(
name
))
tip
=
conv_bn_layer
(
route
,
channel
*
2
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
is_test
=
is_test
,
name
=
'{}.tip'
.
format
(
name
))
return
route
,
tip
def
upsample
(
input
,
scale
=
2
,
name
=
None
):
...
...
@@ -68,11 +77,15 @@ class YOLOv3(object):
if
self
.
is_train
:
self
.
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
shapes
=
[[
-
1
]
+
self
.
image_shape
,
[
-
1
,
cfg
.
max_box_num
,
4
],
[
-
1
,
cfg
.
max_box_num
],
[
-
1
,
cfg
.
max_box_num
]],
lod_levels
=
[
0
,
0
,
0
,
0
],
dtypes
=
[
'float32'
]
*
2
+
[
'int32'
]
+
[
'float32'
],
use_double_buffer
=
True
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
fluid
.
layers
.
read_file
(
self
.
py_reader
)
self
.
image
,
self
.
gtbox
,
self
.
gtlabel
,
self
.
gtscore
=
\
fluid
.
layers
.
read_file
(
self
.
py_reader
)
else
:
self
.
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
self
.
image_shape
,
dtype
=
'float32'
...
...
PaddleCV/yolov3/reader.py
浏览文件 @
f268a8d4
...
...
@@ -53,13 +53,17 @@ class DataSetReader(object):
cfg
.
dataset
))
if
mode
==
'train'
:
cfg
.
train_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_file_list
)
cfg
.
train_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_data_dir
)
cfg
.
train_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_file_list
)
cfg
.
train_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
train_data_dir
)
self
.
COCO
=
COCO
(
cfg
.
train_file_list
)
self
.
img_dir
=
cfg
.
train_data_dir
elif
mode
==
'test'
or
mode
==
'infer'
:
cfg
.
val_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_file_list
)
cfg
.
val_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_data_dir
)
cfg
.
val_file_list
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_file_list
)
cfg
.
val_data_dir
=
os
.
path
.
join
(
cfg
.
data_dir
,
cfg
.
val_data_dir
)
self
.
COCO
=
COCO
(
cfg
.
val_file_list
)
self
.
img_dir
=
cfg
.
val_data_dir
...
...
@@ -88,7 +92,8 @@ class DataSetReader(object):
def
_parse_gt_annotations
(
self
,
img
):
img_height
=
img
[
'height'
]
img_width
=
img
[
'width'
]
anno
=
self
.
COCO
.
loadAnns
(
self
.
COCO
.
getAnnIds
(
imgIds
=
img
[
'id'
],
iscrowd
=
None
))
anno
=
self
.
COCO
.
loadAnns
(
self
.
COCO
.
getAnnIds
(
imgIds
=
img
[
'id'
],
iscrowd
=
None
))
gt_index
=
0
for
target
in
anno
:
if
target
[
'area'
]
<
cfg
.
gt_min_area
:
...
...
@@ -96,13 +101,15 @@ class DataSetReader(object):
if
'ignore'
in
target
and
target
[
'ignore'
]:
continue
box
=
box_utils
.
coco_anno_box_to_center_relative
(
target
[
'bbox'
],
img_height
,
img_width
)
box
=
box_utils
.
coco_anno_box_to_center_relative
(
target
[
'bbox'
],
img_height
,
img_width
)
if
box
[
2
]
<=
0
and
box
[
3
]
<=
0
:
continue
img
[
'gt_id'
][
gt_index
]
=
np
.
int32
(
target
[
'id'
])
img
[
'gt_boxes'
][
gt_index
]
=
box
img
[
'gt_labels'
][
gt_index
]
=
self
.
category_to_id_map
[
target
[
'category_id'
]]
img
[
'gt_labels'
][
gt_index
]
=
\
self
.
category_to_id_map
[
target
[
'category_id'
]]
gt_index
+=
1
if
gt_index
>=
cfg
.
max_box_num
:
break
...
...
@@ -136,10 +143,18 @@ class DataSetReader(object):
else
:
return
self
.
_parse_images
(
is_train
=
(
mode
==
'train'
))
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
mixup_iter
=
0
,
random_sizes
=
[],
image
=
None
):
def
get_reader
(
self
,
mode
,
size
=
416
,
batch_size
=
None
,
shuffle
=
False
,
mixup_iter
=
0
,
random_sizes
=
[],
image
=
None
):
assert
mode
in
[
'train'
,
'test'
,
'infer'
],
"Unknow mode type!"
if
mode
!=
'infer'
:
assert
batch_size
is
not
None
,
"batch size connot be None in mode {}"
.
format
(
mode
)
assert
batch_size
is
not
None
,
\
"batch size connot be None in mode {}"
.
format
(
mode
)
self
.
_parse_dataset_dir
(
mode
)
self
.
_parse_dataset_catagory
()
...
...
@@ -151,7 +166,9 @@ class DataSetReader(object):
h
,
w
,
_
=
im
.
shape
im_scale_x
=
size
/
float
(
w
)
im_scale_y
=
size
/
float
(
h
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_CUBIC
)
out_img
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
im_scale_x
,
fy
=
im_scale_y
,
interpolation
=
cv2
.
INTER_CUBIC
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
out_img
=
(
out_img
/
255.0
-
mean
)
/
std
...
...
@@ -173,11 +190,14 @@ class DataSetReader(object):
mixup_gt_boxes
=
np
.
array
(
mixup_img
[
'gt_boxes'
]).
copy
()
mixup_gt_labels
=
np
.
array
(
mixup_img
[
'gt_labels'
]).
copy
()
mixup_gt_scores
=
np
.
ones_like
(
mixup_gt_labels
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_mixup
(
im
,
gt_boxes
,
\
gt_labels
,
gt_scores
,
mixup_im
,
mixup_gt_boxes
,
mixup_gt_labels
,
\
mixup_gt_scores
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
image_utils
.
image_mixup
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
mixup_im
,
mixup_gt_boxes
,
mixup_gt_labels
,
mixup_gt_scores
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
mean
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
image_utils
.
image_augment
(
im
,
gt_boxes
,
gt_labels
,
gt_scores
,
size
,
mean
)
mean
=
np
.
array
(
mean
).
reshape
((
1
,
1
,
-
1
))
std
=
np
.
array
(
std
).
reshape
((
1
,
1
,
-
1
))
...
...
@@ -214,7 +234,9 @@ class DataSetReader(object):
read_cnt
+=
1
if
read_cnt
%
len
(
imgs
)
==
0
and
shuffle
:
np
.
random
.
shuffle
(
imgs
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
im
,
gt_boxes
,
gt_labels
,
gt_scores
=
\
img_reader_with_augment
(
img
,
img_size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
,
mixup_img
)
batch_out
.
append
([
im
,
gt_boxes
,
gt_labels
,
gt_scores
])
if
len
(
batch_out
)
==
batch_size
:
...
...
@@ -227,7 +249,9 @@ class DataSetReader(object):
imgs
=
self
.
_parse_images_by_mode
(
mode
)
batch_out
=
[]
for
img
in
imgs
:
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
batch_out
.
append
((
im
,
im_id
,
im_shape
))
if
len
(
batch_out
)
==
batch_size
:
yield
batch_out
...
...
@@ -238,7 +262,9 @@ class DataSetReader(object):
img
=
{}
img
[
'image'
]
=
image
img
[
'id'
]
=
0
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
im
,
im_id
,
im_shape
=
img_reader
(
img
,
size
,
cfg
.
pixel_means
,
cfg
.
pixel_stds
)
batch_out
=
[(
im
,
im_id
,
im_shape
)]
yield
batch_out
...
...
@@ -256,7 +282,8 @@ def train(size=416,
num_workers
=
8
,
max_queue
=
32
,
use_multiprocessing
=
True
):
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
int
(
mixup_iter
/
num_workers
),
random_sizes
)
generator
=
dsr
.
get_reader
(
'train'
,
size
,
batch_size
,
shuffle
,
int
(
mixup_iter
/
num_workers
),
random_sizes
)
if
not
use_multiprocessing
:
return
generator
...
...
PaddleCV/yolov3/train.py
浏览文件 @
f268a8d4
...
...
@@ -90,7 +90,13 @@ def train():
total_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
mixup_iter
=
total_iter
-
cfg
.
no_mixup_iter
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
,
shuffle
=
True
,
total_iter
=
total_iter
*
devices_num
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
cfg
.
batch_size
,
shuffle
=
True
,
total_iter
=
total_iter
*
devices_num
,
mixup_iter
=
mixup_iter
*
devices_num
,
random_sizes
=
random_sizes
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
py_reader
=
model
.
py_reader
py_reader
.
decorate_paddle_reader
(
train_reader
)
...
...
@@ -112,21 +118,25 @@ def train():
for
iter_id
in
range
(
cfg
.
start_iter
,
cfg
.
max_iter
):
prev_start_time
=
start_time
start_time
=
time
.
time
()
losses
=
exe
.
run
(
compile_program
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
])
losses
=
exe
.
run
(
compile_program
,
fetch_list
=
[
v
.
name
for
v
in
fetch_list
])
smoothed_loss
.
add_value
(
np
.
mean
(
np
.
array
(
losses
[
0
])))
snapshot_loss
+=
np
.
mean
(
np
.
array
(
losses
[
0
]))
snapshot_time
+=
start_time
-
prev_start_time
lr
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'learning_rate'
)
.
get_tensor
())
print
(
"Iter {:d}, lr {:.6f}, loss {:.6f}, time {:.5f}"
.
format
(
iter_id
,
lr
[
0
],
smoothed_loss
.
get_mean_value
(),
start_time
-
prev_start_time
))
iter_id
,
lr
[
0
],
smoothed_loss
.
get_mean_value
(),
start_time
-
prev_start_time
))
sys
.
stdout
.
flush
()
if
(
iter_id
+
1
)
%
cfg
.
snapshot_iter
==
0
:
save_model
(
"model_iter{}"
.
format
(
iter_id
))
print
(
"Snapshot {} saved, average loss: {}, average time: {}"
.
format
(
iter_id
+
1
,
snapshot_loss
/
float
(
cfg
.
snapshot_iter
),
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
print
(
"Snapshot {} saved, average loss: {},
\
average time: {}"
.
format
(
iter_id
+
1
,
snapshot_loss
/
float
(
cfg
.
snapshot_iter
),
snapshot_time
/
float
(
cfg
.
snapshot_iter
)))
snapshot_loss
=
0
snapshot_time
=
0
except
fluid
.
core
.
EOFException
:
...
...
PaddleCV/yolov3/utility.py
浏览文件 @
f268a8d4
...
...
@@ -101,27 +101,30 @@ def parse_args():
add_arg
(
'dataset'
,
str
,
'coco2017'
,
"Dataset: coco2014, coco2017."
)
add_arg
(
'class_num'
,
int
,
80
,
"Class number."
)
add_arg
(
'data_dir'
,
str
,
'dataset/coco'
,
"The data root path."
)
add_arg
(
'start_iter'
,
int
,
0
,
"Start iteration."
)
add_arg
(
'use_multiprocess'
,
bool
,
True
,
"add multiprocess."
)
add_arg
(
'start_iter'
,
int
,
0
,
"Start iteration."
)
add_arg
(
'use_multiprocess'
,
bool
,
True
,
"add multiprocess."
)
#SOLVER
add_arg
(
'batch_size'
,
int
,
8
,
"Mini-batch size per device."
)
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'max_iter'
,
int
,
500200
,
"Iter number."
)
add_arg
(
'snapshot_iter'
,
int
,
2000
,
"Save model every snapshot stride."
)
add_arg
(
'label_smooth'
,
bool
,
True
,
"Use label smooth in class label."
)
add_arg
(
'no_mixup_iter'
,
int
,
40000
,
"Disable mixup in last N iter."
)
add_arg
(
'batch_size'
,
int
,
8
,
"Mini-batch size per device."
)
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'max_iter'
,
int
,
500200
,
"Iter number."
)
add_arg
(
'snapshot_iter'
,
int
,
2000
,
"Save model every snapshot stride."
)
add_arg
(
'label_smooth'
,
bool
,
True
,
"Use label smooth in class label."
)
add_arg
(
'no_mixup_iter'
,
int
,
40000
,
"Disable mixup in last N iter."
)
# TRAIN TEST INFER
add_arg
(
'input_size'
,
int
,
608
,
"Image input size of YOLOv3."
)
add_arg
(
'random_shape'
,
bool
,
True
,
"Resize to random shape for train reader."
)
add_arg
(
'valid_thresh'
,
float
,
0.005
,
"Valid confidence score for NMS."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'random_shape'
,
bool
,
True
,
"Resize to random shape for train reader."
)
add_arg
(
'valid_thresh'
,
float
,
0.005
,
"Valid confidence score for NMS."
)
add_arg
(
'nms_thresh'
,
float
,
0.45
,
"NMS threshold."
)
add_arg
(
'nms_topk'
,
int
,
400
,
"The number of boxes to perform NMS."
)
add_arg
(
'nms_posk'
,
int
,
100
,
"The number of boxes of NMS output."
)
add_arg
(
'debug'
,
bool
,
False
,
"Debug mode"
)
add_arg
(
'debug'
,
bool
,
False
,
"Debug mode"
)
# SINGLE EVAL AND DRAW
add_arg
(
'image_path'
,
str
,
'image'
,
"The image path used to inference and visualize."
)
add_arg
(
'image_name'
,
str
,
None
,
"The single image used to inference and visualize. None to inference all images in image_path"
)
add_arg
(
'draw_thresh'
,
float
,
0.5
,
"Confidence score threshold to draw prediction box in image in debug mode"
)
add_arg
(
'image_path'
,
str
,
'image'
,
"The image path used to inference and visualize."
)
add_arg
(
'image_name'
,
str
,
None
,
"The single image used to inference and visualize. None to inference all images in image_path"
)
add_arg
(
'draw_thresh'
,
float
,
0.5
,
"Confidence score threshold to draw prediction box in image in debug mode"
)
# yapf: enable
args
=
parser
.
parse_args
()
file_name
=
sys
.
argv
[
0
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录