Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
f0a11911
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f0a11911
编写于
8月 26, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add infer script.
上级
ee1262d5
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
209 addition
and
30 deletion
+209
-30
globally_normalized_reader/README.md
globally_normalized_reader/README.md
+1
-0
globally_normalized_reader/config.py
globally_normalized_reader/config.py
+12
-3
globally_normalized_reader/infer.py
globally_normalized_reader/infer.py
+119
-0
globally_normalized_reader/model.py
globally_normalized_reader/model.py
+7
-1
globally_normalized_reader/reader.py
globally_normalized_reader/reader.py
+2
-2
globally_normalized_reader/train.py
globally_normalized_reader/train.py
+68
-24
未找到文件。
globally_normalized_reader/README.md
0 → 100644
浏览文件 @
f0a11911
TBD
globally_normalized_reader/config.py
浏览文件 @
f0a11911
...
...
@@ -5,7 +5,6 @@ __all__ = ["ModelConfig"]
class
ModelConfig
(
object
):
beam_size
=
3
vocab_size
=
104808
embedding_dim
=
300
embedding_droprate
=
0.3
...
...
@@ -15,7 +14,7 @@ class ModelConfig(object):
lstm_hidden_droprate
=
0.3
passage_indep_embedding_dim
=
300
passage_aligned_embedding_dim
=
128
passage_aligned_embedding_dim
=
300
beam_size
=
32
...
...
@@ -28,6 +27,16 @@ class TrainerConfig(object):
data_dir
=
"data/featurized"
save_dir
=
"models"
batch_size
=
12
*
4
train_batch_size
=
4
*
10
test_batch_size
=
1
epochs
=
100
# for debug print, if set to 0, no information will be printed.
show_parameter_status_period
=
0
checkpoint_period
=
100
log_period
=
1
# this is used to resume training, this path can set to previously
# trained model.
init_model_path
=
None
globally_normalized_reader/infer.py
0 → 100755
浏览文件 @
f0a11911
#!/usr/bin/env python
#coding=utf-8
import
os
import
sys
import
gzip
import
logging
import
numpy
as
np
import
pdb
import
paddle.v2
as
paddle
from
paddle.v2.layer
import
parse_network
import
reader
from
model
import
GNR
from
train
import
choose_samples
from
config
import
ModelConfig
,
TrainerConfig
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
def
load_reverse_dict
(
dict_file
):
word_dict
=
{}
with
open
(
dict_file
,
"r"
)
as
fin
:
for
idx
,
line
in
enumerate
(
fin
):
word_dict
[
idx
]
=
line
.
strip
()
return
word_dict
def
parse_one_sample
(
raw_input_doc
,
sub_sen_scores
,
selected_sentence
,
start_span_scores
,
selected_starts
,
end_span_scores
,
selected_ends
):
assert
len
(
raw_input_doc
)
==
sub_sen_scores
.
shape
[
0
]
beam_size
=
selected_sentence
.
shape
[
1
]
all_searched_ans
=
[]
for
i
in
xrange
(
selected_ends
.
shape
[
0
]):
for
j
in
xrange
(
selected_ends
.
shape
[
1
]):
if
selected_ends
[
i
][
j
]
==
-
1.
:
break
all_searched_ans
.
append
({
'score'
:
end_span_scores
[
int
(
selected_ends
[
i
][
j
])],
'sentence_pos'
:
-
1
,
'start_span_pos'
:
-
1
,
'end_span_pos'
:
int
(
selected_ends
[
i
][
j
]),
'parent_ids_in_prev_beam'
:
i
})
for
path
in
all_searched_ans
:
row_id
=
path
[
'parent_ids_in_prev_beam'
]
/
beam_size
col_id
=
path
[
'parent_ids_in_prev_beam'
]
%
beam_size
path
[
'start_span_pos'
]
=
int
(
selected_starts
[
row_id
][
col_id
])
path
[
'score'
]
+=
start_span_scores
[
path
[
'start_span_pos'
]]
path
[
'parent_ids_in_prev_beam'
]
=
row_id
for
path
in
all_searched_ans
:
row_id
=
path
[
'parent_ids_in_prev_beam'
]
/
beam_size
col_id
=
path
[
'parent_ids_in_prev_beam'
]
%
beam_size
path
[
'sentence_pos'
]
=
int
(
selected_sentence
[
row_id
][
col_id
])
path
[
'score'
]
+=
sub_sen_scores
[
path
[
'sentence_pos'
]]
all_searched_ans
.
sort
(
key
=
lambda
x
:
x
[
'score'
],
reverse
=
True
)
return
all_searched_ans
def
infer_a_batch
(
inferer
,
test_batch
,
ids_2_word
,
out_layer_count
):
outs
=
inferer
.
infer
(
input
=
test_batch
,
flatten_result
=
False
,
field
=
"value"
)
for
test_sample
in
test_batch
:
query_word
=
[
ids_2_word
[
ids
]
for
ids
in
test_sample
[
0
]]
print
(
"query
\n\t
%s
\n
document"
%
(
" "
.
join
(
query_word
)))
# iterate over each word of in document
for
i
,
sentence
in
enumerate
(
test_sample
[
1
]):
sen_word
=
[
ids_2_word
[
ids
]
for
ids
in
sentence
]
print
(
"%d
\t
%s"
%
(
i
,
" "
.
join
(
sen_word
)))
print
(
"gold
\t
[%d %d %d]"
%
(
test_sample
[
3
],
test_sample
[
4
],
test_sample
[
5
]))
ans
=
parse_one_sample
(
test_sample
[
1
],
*
outs
)[
0
]
ans_ids
=
test_sample
[
1
][
ans
[
'sentence_pos'
]][
ans
[
'start_span_pos'
]:
ans
[
'start_span_pos'
]
+
ans
[
'end_span_pos'
]]
ans_str
=
" "
.
join
([
ids_2_word
[
ids
]
for
ids
in
ans_ids
])
print
(
"searched answer
\t
[%d %d %d]
\n\t
%s"
%
(
ans
[
'sentence_pos'
],
ans
[
'start_span_pos'
],
ans
[
'end_span_pos'
],
ans_str
))
def
infer
(
model_path
,
data_dir
,
test_batch_size
,
config
):
assert
os
.
path
.
exists
(
model_path
),
"The model does not exist."
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
ids_2_word
=
load_reverse_dict
(
config
.
dict_path
)
outputs
=
GNR
(
config
,
is_infer
=
True
)
# load the trained models
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
model_path
,
"r"
))
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
outputs
,
parameters
=
parameters
)
_
,
valid_samples
=
choose_samples
(
data_dir
)
test_reader
=
reader
.
data_reader
(
valid_samples
,
is_train
=
False
)
test_batch
=
[]
for
i
,
item
in
enumerate
(
test_reader
()):
test_batch
.
append
(
item
)
if
len
(
test_batch
)
==
test_batch_size
:
infer_a_batch
(
inferer
,
test_batch
,
ids_2_word
,
len
(
outputs
))
test_batch
=
[]
if
len
(
test_batch
):
infer_a_batch
(
inferer
,
test_batch
,
ids_2_word
,
len
(
outputs
))
test_batch
=
[]
if
__name__
==
"__main__"
:
infer
(
"models/pass_00003.tar.gz"
,
TrainerConfig
.
data_dir
,
TrainerConfig
.
test_batch_size
,
ModelConfig
)
globally_normalized_reader/model.py
浏览文件 @
f0a11911
...
...
@@ -113,6 +113,7 @@ def search_answer(doc_lstm_outs, sentence_idx, start_idx, end_idx, config,
input
=
doc_lstm_outs
,
agg_level
=
paddle
.
layer
.
AggregateLevel
.
TO_SEQUENCE
)
sentence_scores
=
paddle
.
layer
.
fc
(
input
=
last_state_of_sentence
,
size
=
1
,
bias_attr
=
False
,
act
=
paddle
.
activation
.
Linear
())
topk_sentence_ids
=
paddle
.
layer
.
kmax_sequence_score
(
input
=
sentence_scores
,
beam_size
=
config
.
beam_size
)
...
...
@@ -122,6 +123,7 @@ def search_answer(doc_lstm_outs, sentence_idx, start_idx, end_idx, config,
# expand beam to search start positions on selected sentences
start_pos_scores
=
paddle
.
layer
.
fc
(
input
=
topk_sen
,
size
=
1
,
bias_attr
=
False
,
act
=
paddle
.
activation
.
Linear
())
topk_start_pos_ids
=
paddle
.
layer
.
kmax_sequence_score
(
input
=
start_pos_scores
,
beam_size
=
config
.
beam_size
)
...
...
@@ -137,12 +139,16 @@ def search_answer(doc_lstm_outs, sentence_idx, start_idx, end_idx, config,
prefix
=
"__end_span_embeddings__"
)
end_pos_scores
=
paddle
.
layer
.
fc
(
input
=
end_span_embedding
,
size
=
1
,
bias_attr
=
False
,
act
=
paddle
.
activation
.
Linear
())
topk_end_pos_ids
=
paddle
.
layer
.
kmax_sequence_score
(
input
=
end_pos_scores
,
beam_size
=
config
.
beam_size
)
if
is_infer
:
return
[
topk_sentence_ids
,
topk_start_pos_ids
,
topk_end_pos_ids
]
return
[
sentence_scores
,
topk_sentence_ids
,
start_pos_scores
,
topk_start_pos_ids
,
end_pos_scores
,
topk_end_pos_ids
]
else
:
return
paddle
.
layer
.
cross_entropy_over_beam
(
input
=
[
paddle
.
layer
.
BeamInput
(
sentence_scores
,
topk_sentence_ids
,
...
...
globally_normalized_reader/reader.py
浏览文件 @
f0a11911
...
...
@@ -9,7 +9,7 @@ logger = logging.getLogger("paddle")
logger
.
setLevel
(
logging
.
INFO
)
def
train
_reader
(
data_list
,
is_train
=
True
):
def
data
_reader
(
data_list
,
is_train
=
True
):
def
reader
():
# every pass shuffle the data list again
if
is_train
:
...
...
@@ -39,6 +39,6 @@ if __name__ == "__main__":
from
train
import
choose_samples
train_list
,
dev_list
=
choose_samples
(
"data/featurized"
)
for
i
,
item
in
enumerate
(
train
_reader
(
train_list
)()):
for
i
,
item
in
enumerate
(
data
_reader
(
train_list
)()):
print
(
item
)
if
i
>
5
:
break
globally_normalized_reader/train.py
浏览文件 @
f0a11911
...
...
@@ -21,6 +21,14 @@ logger = logging.getLogger("paddle")
logger
.
setLevel
(
logging
.
INFO
)
def
load_initial_model
(
model_path
,
parameters
):
"""
initalize parameters in the network from a trained model.
"""
with
gzip
.
open
(
model_path
,
"rb"
)
as
f
:
parameters
.
init_from_tar
(
f
)
def
load_pretrained_parameters
(
path
,
height
,
width
):
return
np
.
load
(
path
)
...
...
@@ -35,6 +43,38 @@ def load_initial_model(model_path, parameters):
parameters
.
init_from_tar
(
f
)
def
show_parameter_init_info
(
parameters
):
for
p
in
parameters
:
logger
.
info
(
"%s : initial_mean %.4f initial_std %.4f"
%
(
p
,
parameters
.
__param_conf__
[
p
].
initial_mean
,
parameters
.
__param_conf__
[
p
].
initial_std
))
def
dump_value_matrix
(
param_name
,
dims
,
value
):
np
.
savetxt
(
param_name
+
".txt"
,
value
.
reshape
(
dims
[
0
],
dims
[
1
]),
fmt
=
"%.4f"
,
delimiter
=
","
)
def
show_parameter_status
(
parameters
):
# for debug print
for
p
in
parameters
:
value
=
parameters
.
get
(
p
)
grad
=
parameters
.
get_grad
(
p
)
avg_abs_value
=
np
.
average
(
np
.
abs
(
value
))
avg_abs_grad
=
np
.
average
(
np
.
abs
(
grad
))
logger
.
info
(
(
"%s avg_abs_value=%.6f avg_abs_grad=%.6f "
"min_value=%.6f max_value=%.6f min_grad=%.6f max_grad=%.6f"
)
%
(
p
,
avg_abs_value
,
avg_abs_grad
,
value
.
min
(),
value
.
max
(),
grad
.
min
(),
grad
.
max
()))
def
choose_samples
(
path
):
"""
Load filenames for train, dev, and augmented samples.
...
...
@@ -52,7 +92,7 @@ def choose_samples(path):
train_samples
.
sort
()
valid_samples
.
sort
()
#
random.shuffle(train_samples)
random
.
shuffle
(
train_samples
)
return
train_samples
,
valid_samples
...
...
@@ -65,15 +105,12 @@ def build_reader(data_dir, batch_size):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
train
_reader
(
train_samples
),
buf_size
=
102400
),
reader
.
data
_reader
(
train_samples
),
buf_size
=
102400
),
batch_size
=
batch_size
)
# train_reader = paddle.batch(
# reader.train_reader(train_samples), batch_size=batch_size)
# testing data is not shuffled
test_reader
=
paddle
.
batch
(
reader
.
train
_reader
(
reader
.
data
_reader
(
valid_samples
,
is_train
=
False
),
batch_size
=
batch_size
)
return
train_reader
,
test_reader
...
...
@@ -87,16 +124,21 @@ def build_event_handler(config, parameters, trainer, test_reader):
# End batch and end pass event handler
def
event_handler
(
event
):
"""The event handler."""
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
(
not
event
.
batch_id
%
100
)
and
event
.
batch_id
:
if
event
.
batch_id
and
\
(
not
event
.
batch_id
%
config
.
checkpoint_period
):
save_path
=
os
.
path
.
join
(
config
.
save_dir
,
"checkpoint_param.latest.tar.gz"
)
save_model
(
save_path
,
parameters
)
if
not
event
.
batch_id
%
1
:
logger
.
info
(
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
))
if
event
.
batch_id
and
not
event
.
batch_id
%
config
.
log_period
:
logger
.
info
(
"Pass %d, Batch %d, Cost %f"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
))
if
config
.
show_parameter_status_period
and
event
.
batch_id
and
\
not
(
event
.
batch_id
%
config
.
show_parameter_status_period
):
show_parameter_status
(
parameters
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
save_path
=
os
.
path
.
join
(
config
.
save_dir
,
...
...
@@ -119,34 +161,36 @@ def train(model_config, trainer_config):
# define the optimizer
optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
trainer_config
.
learning_rate
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
1e-3
),
# model_average=paddle.optimizer.ModelAverage(average_window=0.5))
)
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
5e-4
),
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
))
# define network topology
loss
=
GNR
(
model_config
)
# print(parse_network(loss))
parameters
=
paddle
.
parameters
.
create
(
loss
)
parameters
.
set
(
"GloveVectors"
,
load_pretrained_parameters
(
ModelConfig
.
pretrained_emb_path
,
height
=
ModelConfig
.
vocab_size
,
width
=
ModelConfig
.
embedding_dim
))
show_parameter_init_info
(
parameters
)
if
trainer_config
.
init_model_path
:
load_initial_model
(
trainer_config
.
init_model_path
,
parameters
)
else
:
# load the pre-trained embeddings
parameters
.
set
(
"GloveVectors"
,
load_pretrained_parameters
(
ModelConfig
.
pretrained_emb_path
,
height
=
ModelConfig
.
vocab_size
,
width
=
ModelConfig
.
embedding_dim
))
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
loss
,
parameters
=
parameters
,
update_equation
=
optimizer
)
# define data reader
train_reader
,
test_reader
=
build_reader
(
trainer_config
.
data_dir
,
trainer_config
.
batch_size
)
trainer_config
.
train_
batch_size
)
event_handler
=
build_event_handler
(
trainer_config
,
parameters
,
trainer
,
test_reader
)
trainer
.
train
(
reader
=
data
_reader
,
reader
=
train
_reader
,
num_passes
=
trainer_config
.
epochs
,
event_handler
=
event_handler
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录