To train a metric learning model, one need to set the neural network as backbone and the metric loss function to optimize. You can download [ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip) pretrained on imagenet dataset as backbone. We train meiric learning model using softmax or arcmargin loss firstly, and then fine-turned the model using other metric learning loss, such as triplet, quadruplet and eml loss. One example of training using arcmargin loss is shown below:
To train a metric learning model, one need to set the neural network as backbone and the metric loss function to optimize. You can download [ResNet50](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) pretrained on imagenet dataset as backbone. We train meiric learning model using softmax or arcmargin loss firstly, and then fine-turned the model using other metric learning loss, such as triplet, quadruplet and eml loss. One example of training using arcmargin loss is shown below: