Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ebda2052
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ebda2052
编写于
12月 18, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine Reader
上级
8c32619e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
88 addition
and
62 deletion
+88
-62
fluid/PaddleRec/word2vec/network_conf.py
fluid/PaddleRec/word2vec/network_conf.py
+0
-1
fluid/PaddleRec/word2vec/preprocess.py
fluid/PaddleRec/word2vec/preprocess.py
+2
-2
fluid/PaddleRec/word2vec/reader.py
fluid/PaddleRec/word2vec/reader.py
+40
-23
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+46
-36
未找到文件。
fluid/PaddleRec/word2vec/network_conf.py
浏览文件 @
ebda2052
...
...
@@ -117,7 +117,6 @@ def skip_gram_word2vec(dict_size,
cost
=
cost_hs
if
with_nce
and
with_hsigmoid
:
cost
=
fluid
.
layers
.
elementwise_add
(
cost_nce
,
cost_hs
)
avg_cost
=
fluid
.
layers
.
reduce_mean
(
cost
)
return
avg_cost
,
py_reader
fluid/PaddleRec/word2vec/preprocess.py
浏览文件 @
ebda2052
...
...
@@ -31,9 +31,9 @@ def parse_args():
return
parser
.
parse_args
()
pattern
=
re
.
compile
(
"[^a-z] "
)
def
text_strip
(
text
):
return
re
.
sub
(
"[^a-z ]"
,
""
,
text
)
return
pattern
.
sub
(
""
,
text
)
def
build_Huffman
(
word_count
,
max_code_length
):
...
...
fluid/PaddleRec/word2vec/reader.py
浏览文件 @
ebda2052
...
...
@@ -10,6 +10,23 @@ logger = logging.getLogger("fluid")
logger
.
setLevel
(
logging
.
INFO
)
class
NumpyRandomInt
(
object
):
def
__init__
(
self
,
a
,
b
,
buf_size
=
1000
):
self
.
idx
=
0
self
.
buffer
=
np
.
random
.
random_integers
(
a
,
b
,
buf_size
)
self
.
a
=
a
self
.
b
=
b
def
__call__
(
self
):
if
self
.
idx
==
len
(
self
.
buffer
):
self
.
buffer
=
np
.
random
.
random_integers
(
self
.
a
,
self
.
b
,
len
(
self
.
buffer
))
self
.
idx
=
0
result
=
self
.
buffer
[
self
.
idx
]
self
.
idx
+=
1
return
result
class
Word2VecReader
(
object
):
def
__init__
(
self
,
dict_path
,
...
...
@@ -37,7 +54,7 @@ class Word2VecReader(object):
for
line
in
f
:
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
self
.
word_to_id_
[
word
]
=
word_id
self
.
id_to_word
[
word_id
]
=
word
#build id to word dict
self
.
id_to_word
[
word_id
]
=
word
#
build id to word dict
word_id
+=
1
word_counts
.
append
(
count
)
word_all_count
+=
count
...
...
@@ -67,7 +84,9 @@ class Word2VecReader(object):
line
.
split
(
':'
)[
1
],
dtype
=
int
,
sep
=
' '
)
print
(
"word_pcode dict_size = "
+
str
(
len
(
self
.
word_to_code
)))
def
get_context_words
(
self
,
words
,
idx
,
window_size
):
self
.
random_generator
=
NumpyRandomInt
(
1
,
self
.
window_size_
+
1
)
def
get_context_words
(
self
,
words
,
idx
):
"""
Get the context word list of target word.
...
...
@@ -75,13 +94,15 @@ class Word2VecReader(object):
idx: input word index
window_size: window size
"""
target_window
=
np
.
random
.
randint
(
1
,
window_size
+
1
)
target_window
=
self
.
random_generator
(
)
# need to keep in mind that maybe there are no enough words before the target word.
start_point
=
idx
-
target_window
if
(
idx
-
target_window
)
>
0
else
0
start_point
=
idx
-
target_window
# if (idx - target_window) > 0 else 0
if
start_point
<
0
:
start_point
=
0
end_point
=
idx
+
target_window
# context words of the target word
targets
=
set
(
words
[
start_point
:
idx
]
+
words
[
idx
+
1
:
end_point
+
1
])
return
lis
t
(
targets
)
targets
=
words
[
start_point
:
idx
]
+
words
[
idx
+
1
:
end_point
+
1
]
return
se
t
(
targets
)
def
train
(
self
,
with_hs
):
def
_reader
():
...
...
@@ -98,10 +119,10 @@ class Word2VecReader(object):
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
]
else
:
pass
count
+=
1
...
...
@@ -120,16 +141,15 @@ class Word2VecReader(object):
if
word
in
self
.
word_to_id_
]
for
idx
,
target_id
in
enumerate
(
word_ids
):
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
,
self
.
window_size_
)
context_word_ids
=
self
.
get_context_words
(
word_ids
,
idx
)
for
context_id
in
context_word_ids
:
yield
[
target_id
],
[
context_id
],
[
self
.
word_to_code
[
self
.
id_to_word
[
context_id
]]
],
[
self
.
word_to_path
[
self
.
id_to_word
[
context_id
]]
]
self
.
word_to_path
[
self
.
id_to_word
[
context_id
]]
]
else
:
pass
count
+=
1
...
...
@@ -142,13 +162,10 @@ class Word2VecReader(object):
if
__name__
==
"__main__"
:
window_size
=
10
reader
=
Word2VecReader
(
"data/enwik9_dict"
,
"data/enwik9"
,
window_size
)
i
=
0
for
x
,
y
in
reader
.
train
()():
print
(
"x: "
+
str
(
x
))
print
(
"y: "
+
str
(
y
))
print
(
"
\n
"
)
if
i
==
10
:
exit
(
0
)
i
+=
1
reader
=
Word2VecReader
(
"data/1-billion_dict"
,
"data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/"
,
[
'news.en-00001-of-00100'
],
trainer_id
=
0
,
trainer_num
=
1
,
window_size
=
5
)
# i = 0
for
x
,
y
in
reader
.
train
(
False
)():
pass
fluid/PaddleRec/word2vec/train.py
浏览文件 @
ebda2052
...
...
@@ -4,11 +4,10 @@ import argparse
import
logging
import
os
import
time
import
numpy
as
np
import
six
# disable gpu training for this example
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
#
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import
paddle
import
paddle.fluid
as
fluid
...
...
@@ -49,7 +48,7 @@ def parse_args():
parser
.
add_argument
(
'--num_passes'
,
type
=
int
,
default
=
1
0
,
default
=
1
,
help
=
"The number of passes to train (default: 10)"
)
parser
.
add_argument
(
'--model_output_dir'
,
...
...
@@ -126,14 +125,35 @@ def parse_args():
return
parser
.
parse_args
()
def
train_loop
(
args
,
train_program
,
reader
,
py_reader
,
loss
,
trainer_id
):
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
reader
.
train
((
args
.
with_hs
or
(
not
args
.
with_nce
))),
buf_size
=
args
.
batch_size
*
100
),
batch_size
=
args
.
batch_size
)
def
convert_python_to_tensor
(
batch_size
,
sample_reader
):
def
__reader__
():
result
=
[[],
[],
[],
[]]
for
sample
in
sample_reader
():
for
i
,
fea
in
enumerate
(
sample
):
result
[
i
].
append
(
fea
)
if
len
(
result
[
0
])
==
batch_size
:
tensor_result
=
[]
for
tensor
in
result
:
t
=
fluid
.
Tensor
()
dat
=
np
.
array
(
tensor
,
dtype
=
'int64'
)
if
len
(
dat
.
shape
)
>
2
:
dat
=
dat
.
reshape
((
dat
.
shape
[
0
],
dat
.
shape
[
2
]))
elif
len
(
dat
.
shape
)
==
1
:
dat
=
dat
.
reshape
((
-
1
,
1
))
t
.
set
(
dat
,
fluid
.
CPUPlace
())
tensor_result
.
append
(
t
)
yield
tensor_result
result
=
[[],
[],
[],
[]]
py_reader
.
decorate_paddle_reader
(
train_reader
)
return
__reader__
def
train_loop
(
args
,
train_program
,
reader
,
py_reader
,
loss
,
trainer_id
):
py_reader
.
decorate_tensor_provider
(
convert_python_to_tensor
(
args
.
batch_size
,
reader
.
train
((
args
.
with_hs
or
(
not
args
.
with_nce
)))))
# py_reader.decorate_paddle_reader(train_reader)
place
=
fluid
.
CPUPlace
()
...
...
@@ -144,6 +164,7 @@ def train_loop(args, train_program, reader, py_reader, loss, trainer_id):
print
(
"CPU_NUM:"
+
str
(
os
.
getenv
(
"CPU_NUM"
)))
exec_strategy
.
num_threads
=
int
(
os
.
getenv
(
"CPU_NUM"
))
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
if
int
(
os
.
getenv
(
"CPU_NUM"
))
>
1
:
...
...
@@ -156,43 +177,31 @@ def train_loop(args, train_program, reader, py_reader, loss, trainer_id):
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
profile_state
=
"CPU"
profiler_step
=
0
profiler_step_start
=
20
profiler_step_end
=
30
for
pass_id
in
range
(
args
.
num_passes
):
epoch_start
=
time
.
time
()
py_reader
.
start
()
time
.
sleep
(
10
)
# wait reading data.
epoch_start
=
time
.
time
()
batch_id
=
0
start
=
time
.
clock
()
try
:
while
True
:
if
profiler_step
==
profiler_step_start
:
fluid
.
profiler
.
start_profiler
(
profile_state
)
loss_val
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
])
loss_val
=
np
.
mean
(
loss_val
)
if
profiler_step
==
profiler_step_end
:
fluid
.
profiler
.
stop_profiler
(
'total'
,
'trainer_profile.log'
)
profiler_step
+=
1
else
:
profiler_step
+=
1
if
batch_id
%
50
==
0
:
logger
.
info
(
"TRAIN --> pass: {} batch: {} loss: {} reader queue:{}"
.
format
(
pass_id
,
batch_id
,
loss_val
.
mean
()
/
args
.
batch_size
,
py_reader
.
queue
.
size
()))
format
(
pass_id
,
batch_id
,
loss_val
,
py_reader
.
queue
.
size
()))
if
batch_id
==
1000
:
exit
(
0
)
if
args
.
with_speed
:
if
batch_id
%
100
0
==
0
and
batch_id
!=
0
:
if
batch_id
%
100
==
0
and
batch_id
!=
0
:
elapsed
=
(
time
.
clock
()
-
start
)
start
=
time
.
clock
()
samples
=
10
0
1
*
args
.
batch_size
*
int
(
samples
=
101
*
args
.
batch_size
*
int
(
os
.
getenv
(
"CPU_NUM"
))
logger
.
info
(
"Time used: {}, Samples/Sec: {}"
.
format
(
elapsed
,
samples
/
elapsed
))
...
...
@@ -229,11 +238,12 @@ def GetFileList(data_path):
def
train
(
args
):
print
(
"I am ehre"
)
if
not
os
.
path
.
isdir
(
args
.
model_output_dir
):
os
.
mkdir
(
args
.
model_output_dir
)
filelist
=
GetFileList
(
args
.
train_data_path
)
filelist
=
GetFileList
(
args
.
train_data_path
)[:
1
]
print
(
filelist
)
word2vec_reader
=
None
if
args
.
is_local
or
os
.
getenv
(
"PADDLE_IS_LOCAL"
,
"1"
)
==
"1"
:
word2vec_reader
=
reader
.
Word2VecReader
(
...
...
@@ -329,7 +339,7 @@ def env_declar():
print
(
"%30s %s
\n
"
%
(
key
,
os
.
environ
[
key
]))
if
os
.
environ
[
"TRAINING_ROLE"
]
==
"PSERVER"
or
os
.
environ
[
"PADDLE_IS_LOCAL"
]
==
"0"
:
"PADDLE_IS_LOCAL"
]
==
"0"
:
os
.
environ
[
"PADDLE_TRAINING_ROLE"
]
=
os
.
environ
[
"TRAINING_ROLE"
]
os
.
environ
[
"PADDLE_PSERVER_PORT"
]
=
os
.
environ
[
"PADDLE_PORT"
]
os
.
environ
[
"PADDLE_PSERVER_IPS"
]
=
os
.
environ
[
"PADDLE_PSERVERS"
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录