Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
eb25dcec
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
eb25dcec
编写于
8月 17, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish Infer
上级
937cf5f0
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
24 addition
and
60 deletion
+24
-60
fluid/neural_machine_translation/transformer/config.py
fluid/neural_machine_translation/transformer/config.py
+3
-3
fluid/neural_machine_translation/transformer/infer.py
fluid/neural_machine_translation/transformer/infer.py
+7
-32
fluid/neural_machine_translation/transformer/model.py
fluid/neural_machine_translation/transformer/model.py
+14
-25
未找到文件。
fluid/neural_machine_translation/transformer/config.py
浏览文件 @
eb25dcec
...
...
@@ -190,6 +190,6 @@ fast_decoder_data_input_fields = (
"trg_word"
,
"init_score"
,
"trg_src_attn_bias"
,
)
fast_decoder_util_input_fields
=
(
"trg_slf_attn_pre_softmax_shape_delta"
,
"trg_slf_attn_post_softmax_shape_delta"
,
)
#
fast_decoder_util_input_fields = (
#
"trg_slf_attn_pre_softmax_shape_delta",
#
"trg_slf_attn_post_softmax_shape_delta", )
fluid/neural_machine_translation/transformer/infer.py
浏览文件 @
eb25dcec
...
...
@@ -424,8 +424,8 @@ def py_infer(test_data, trg_idx2word, use_wordpiece):
print
(
" "
.
join
([
trg_idx2word
[
idx
]
for
idx
in
seq
]))
def
prepare_batch_input
(
insts
,
data_input_names
,
util_input_names
,
src_pad_idx
,
bos_idx
,
n_head
,
d_model
,
place
):
def
prepare_batch_input
(
insts
,
data_input_names
,
src_pad_idx
,
bos_idx
,
n_head
,
d_model
,
place
):
"""
Put all padded data needed by beam search decoder into a dict.
"""
...
...
@@ -435,25 +435,9 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
trg_word
=
np
.
asarray
([[
bos_idx
]]
*
len
(
insts
),
dtype
=
"int64"
)
trg_src_attn_bias
=
np
.
tile
(
src_slf_attn_bias
[:,
:,
::
src_max_len
,
:],
[
1
,
1
,
1
,
1
]).
astype
(
"float32"
)
# These shape tensors are used in reshape_op.
src_data_shape
=
np
.
array
([
-
1
,
src_max_len
,
d_model
],
dtype
=
"int32"
)
trg_data_shape
=
np
.
array
([
-
1
,
1
,
d_model
],
dtype
=
"int32"
)
src_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
src_slf_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
src_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
src_slf_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
trg_slf_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
1
],
dtype
=
"int32"
)
# only the first time step
trg_slf_attn_post_softmax_shape
=
np
.
array
(
[
-
1
,
n_head
,
1
,
1
],
dtype
=
"int32"
)
# only the first time step
trg_src_attn_pre_softmax_shape
=
np
.
array
(
[
-
1
,
trg_src_attn_bias
.
shape
[
-
1
]],
dtype
=
"int32"
)
trg_src_attn_post_softmax_shape
=
np
.
array
(
[
-
1
]
+
list
(
trg_src_attn_bias
.
shape
[
1
:]),
dtype
=
"int32"
)
# These inputs are used to change the shapes in the loop of while op.
attn_pre_softmax_shape_delta
=
np
.
array
([
0
,
1
],
dtype
=
"int32"
)
attn_post_softmax_shape_delta
=
np
.
array
([
0
,
0
,
0
,
1
],
dtype
=
"int32"
)
trg_word
=
trg_word
.
reshape
(
-
1
,
1
,
1
)
src_word
=
src_word
.
reshape
(
-
1
,
src_max_len
,
1
)
src_pos
=
src_pos
.
reshape
(
-
1
,
src_max_len
,
1
)
def
to_lodtensor
(
data
,
place
,
lod
=
None
):
data_tensor
=
fluid
.
LoDTensor
()
...
...
@@ -465,7 +449,7 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
# beamsearch_op must use tensors with lod
init_score
=
to_lodtensor
(
np
.
zeros_like
(
trg_word
,
dtype
=
"float32"
),
trg_word
,
dtype
=
"float32"
)
.
reshape
(
-
1
,
1
)
,
place
,
[
range
(
trg_word
.
shape
[
0
]
+
1
)]
*
2
)
trg_word
=
to_lodtensor
(
trg_word
,
place
,
[
range
(
trg_word
.
shape
[
0
]
+
1
)]
*
2
)
...
...
@@ -474,16 +458,8 @@ def prepare_batch_input(insts, data_input_names, util_input_names, src_pad_idx,
src_word
,
src_pos
,
src_slf_attn_bias
,
trg_word
,
init_score
,
trg_src_attn_bias
]))
util_input_dict
=
dict
(
zip
(
util_input_names
,
[
src_data_shape
,
src_slf_attn_pre_softmax_shape
,
src_slf_attn_post_softmax_shape
,
trg_data_shape
,
trg_slf_attn_pre_softmax_shape
,
trg_slf_attn_post_softmax_shape
,
trg_src_attn_pre_softmax_shape
,
trg_src_attn_post_softmax_shape
,
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
]))
input_dict
=
dict
(
data_input_dict
.
items
()
+
util_input_dict
.
items
()
)
input_dict
=
dict
(
data_input_dict
.
items
())
return
input_dict
...
...
@@ -515,7 +491,6 @@ def fast_infer(test_data, trg_idx2word, use_wordpiece):
for
batch_id
,
data
in
enumerate
(
test_data
.
batch_generator
()):
data_input
=
prepare_batch_input
(
data
,
encoder_data_input_fields
+
fast_decoder_data_input_fields
,
encoder_util_input_fields
+
fast_decoder_util_input_fields
,
ModelHyperParams
.
eos_idx
,
ModelHyperParams
.
bos_idx
,
ModelHyperParams
.
n_head
,
ModelHyperParams
.
d_model
,
place
)
seq_ids
,
seq_scores
=
exe
.
run
(
infer_program
,
...
...
fluid/neural_machine_translation/transformer/model.py
浏览文件 @
eb25dcec
...
...
@@ -197,6 +197,7 @@ def prepare_encoder(src_word,
param_attr
=
fluid
.
ParamAttr
(
name
=
word_emb_param_name
,
initializer
=
fluid
.
initializer
.
Normal
(
0.
,
src_emb_dim
**-
0.5
)))
src_word_emb
=
layers
.
scale
(
x
=
src_word_emb
,
scale
=
src_emb_dim
**
0.5
)
src_pos_enc
=
layers
.
embedding
(
src_pos
,
...
...
@@ -453,8 +454,7 @@ def wrap_encoder(src_vocab_size,
if
enc_inputs
is
None
:
# This is used to implement independent encoder program in inference.
src_word
,
src_pos
,
src_slf_attn_bias
=
\
make_all_inputs
(
encoder_data_input_fields
+
encoder_util_input_fields
)
make_all_inputs
(
encoder_data_input_fields
)
else
:
src_word
,
src_pos
,
src_slf_attn_bias
=
\
enc_inputs
...
...
@@ -554,12 +554,8 @@ def fast_decode(
enc_output
=
wrap_encoder
(
src_vocab_size
,
max_in_len
,
n_layer
,
n_head
,
d_key
,
d_value
,
d_model
,
d_inner_hid
,
dropout_rate
,
weight_sharing
)
start_tokens
,
init_scores
,
trg_src_attn_bias
,
trg_data_shape
,
\
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
\
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
,
\
attn_pre_softmax_shape_delta
,
attn_post_softmax_shape_delta
=
\
make_all_inputs
(
fast_decoder_data_input_fields
+
fast_decoder_util_input_fields
)
start_tokens
,
init_scores
,
trg_src_attn_bias
=
\
make_all_inputs
(
fast_decoder_data_input_fields
)
def
beam_search
():
max_len
=
layers
.
fill_constant
(
...
...
@@ -570,6 +566,8 @@ def fast_decode(
while_op
=
layers
.
While
(
cond
)
# array states will be stored for each step.
ids
=
layers
.
array_write
(
start_tokens
,
step_idx
)
ids_flatten
=
layers
.
array_write
(
layers
.
reshape
(
start_tokens
,
(
-
1
,
1
)),
step_idx
)
scores
=
layers
.
array_write
(
init_scores
,
step_idx
)
# cell states will be overwrited at each step.
# caches contains states of history steps to reduce redundant
...
...
@@ -604,7 +602,7 @@ def fast_decode(
x
=
layers
.
fill_constant_batch_size_like
(
input
=
pre_enc_output
,
# cann't use pre_ids here since it has lod
value
=
1
,
shape
=
[
-
1
,
1
],
shape
=
[
-
1
,
1
,
1
],
dtype
=
pre_ids
.
dtype
),
y
=
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
False
),
...
...
@@ -620,12 +618,11 @@ def fast_decode(
d_inner_hid
,
dropout_rate
,
weight_sharing
,
dec_inputs
=
(
pre_ids
,
pre_pos
,
None
,
pre_src_attn_bias
,
trg_data_shape
,
slf_attn_pre_softmax_shape
,
slf_attn_post_softmax_shape
,
src_attn_pre_softmax_shape
,
src_attn_post_softmax_shape
),
dec_inputs
=
(
pre_ids
,
pre_pos
,
None
,
pre_src_attn_bias
),
enc_output
=
pre_enc_output
,
caches
=
pre_caches
)
logits
=
layers
.
reshape
(
logits
,
(
-
1
,
trg_vocab_size
))
topk_scores
,
topk_indices
=
layers
.
topk
(
input
=
layers
.
softmax
(
logits
),
k
=
beam_size
)
accu_scores
=
layers
.
elementwise_add
(
...
...
@@ -642,8 +639,11 @@ def fast_decode(
scores
=
accu_scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
layers
.
increment
(
x
=
step_idx
,
value
=
1.0
,
in_place
=
True
)
# update states
layers
.
array_write
(
selected_ids
,
i
=
step_idx
,
array
=
ids_flatten
)
selected_ids
=
layers
.
reshape
(
selected_ids
,
shape
=
(
-
1
,
1
,
1
))
layers
.
array_write
(
selected_ids
,
i
=
step_idx
,
array
=
ids
)
layers
.
array_write
(
selected_scores
,
i
=
step_idx
,
array
=
scores
)
layers
.
assign
(
pre_src_attn_bias
,
trg_src_attn_bias
)
...
...
@@ -651,23 +651,12 @@ def fast_decode(
for
i
in
range
(
n_layer
):
layers
.
assign
(
pre_caches
[
i
][
"k"
],
caches
[
i
][
"k"
])
layers
.
assign
(
pre_caches
[
i
][
"v"
],
caches
[
i
][
"v"
])
layers
.
assign
(
layers
.
elementwise_add
(
x
=
slf_attn_pre_softmax_shape
,
y
=
attn_pre_softmax_shape_delta
),
slf_attn_pre_softmax_shape
)
layers
.
assign
(
layers
.
elementwise_add
(
x
=
slf_attn_post_softmax_shape
,
y
=
attn_post_softmax_shape_delta
),
slf_attn_post_softmax_shape
)
length_cond
=
layers
.
less_than
(
x
=
step_idx
,
y
=
max_len
)
finish_cond
=
layers
.
logical_not
(
layers
.
is_empty
(
x
=
selected_ids
))
layers
.
logical_and
(
x
=
length_cond
,
y
=
finish_cond
,
out
=
cond
)
finished_ids
,
finished_scores
=
layers
.
beam_search_decode
(
ids
,
scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
ids
_flatten
,
scores
,
beam_size
=
beam_size
,
end_id
=
eos_idx
)
return
finished_ids
,
finished_scores
finished_ids
,
finished_scores
=
beam_search
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录