提交 eab208a9 编写于 作者: Z zhengya01

add multiview_simnet ce

上级 71614226
#!/bin/bash
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1
export CPU_NUM=1
export NUM_THREADS=1
FLAGS_benchmark=true python train.py --enable_ce | python _ce.py
# this file is only used for continuous evaluation test!
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi
from kpi import DurationKpi
from kpi import AccKpi
each_pass_duration_cpu1_thread1_kpi = DurationKpi('each_pass_duration_cpu1_thread1', 0.08, 0, actived=True)
train_loss_cpu1_thread1_kpi = CostKpi('train_loss_cpu1_thread1', 0.08, 0)
tracking_kpis = [
each_pass_duration_cpu1_thread1_kpi,
train_loss_cpu1_thread1_kpi,
]
def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value
def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi
for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()
if __name__ == '__main__':
log = sys.stdin.read()
log_to_ce(log)
......@@ -81,10 +81,19 @@ def parse_args():
"for index processing")
parser.add_argument(
"--hidden_size", type=int, default=128, help="Hidden dim")
parser.add_argument(
'--enable_ce',
action='store_true',
help='If set, run the task with continuous evaluation logs.')
return parser.parse_args()
def start_train(args):
if args.enable_ce:
SEED = 102
fluid.default_startup_program().random_seed = SEED
fluid.default_startup_program().random_seed = SEED
dataset = reader.SyntheticDataset(args.sparse_feature_dim, args.query_slots,
args.title_slots)
train_reader = paddle.batch(
......@@ -115,7 +124,10 @@ def start_train(args):
exe = fluid.Executor(place)
exe.run(startup_program)
total_time = 0
ce_info = []
for pass_id in range(args.epochs):
start_time = time.time()
for batch_id, data in enumerate(train_reader()):
loss_val, correct_val = exe.run(loop_program,
feed=feeder.feed(data),
......@@ -123,10 +135,34 @@ def start_train(args):
logger.info("TRAIN --> pass: {} batch_id: {} avg_cost: {}, acc: {}"
.format(pass_id, batch_id, loss_val,
float(correct_val) / args.batch_size))
ce_info.append(loss_val[0])
end_time = time.time()
total_time += end_time - start_time
fluid.io.save_inference_model(args.model_output_dir,
[val.name for val in all_slots],
[avg_cost, correct], exe)
# only for ce
if args.enable_ce:
threads_num, cpu_num = get_cards(args)
epoch_idx = args.epochs
ce_loss = 0
try:
ce_loss = ce_info[-2]
except:
logger.error("ce info error")
print("kpis\teach_pass_duration_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, total_time / epoch_idx))
print("kpis\ttrain_loss_cpu%s_thread%s\t%s" %
(cpu_num, threads_num, ce_loss))
def get_cards(args):
threads_num = os.environ.get('NUM_THREADS', 1)
cpu_num = os.environ.get('CPU_NUM', 1)
return int(threads_num), int(cpu_num)
def main():
args = parse_args()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册