Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e56ead99
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e56ead99
编写于
4月 28, 2018
作者:
C
chengyao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix codestyle
上级
2d392828
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
270 addition
and
312 deletion
+270
-312
fluid/text_classification/clouds/scdb_parallel_executor.py
fluid/text_classification/clouds/scdb_parallel_executor.py
+134
-154
fluid/text_classification/clouds/scdb_single_card.py
fluid/text_classification/clouds/scdb_single_card.py
+136
-158
未找到文件。
fluid/text_classification/clouds/scdb_parallel_executor.py
浏览文件 @
e56ead99
...
...
@@ -9,6 +9,7 @@ import os
import
json
import
random
def
to_lodtensor
(
data
,
place
):
"""
convert to LODtensor
...
...
@@ -45,20 +46,22 @@ def data2tensor(data, place):
"""
data2tensor
"""
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
return
{
"words"
:
input_seq
,
"label"
:
y_data
}
def
data2pred
(
data
,
place
):
"""
data2tensor
"""
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
return
{
"words"
:
input_seq
}
def
load_dict
(
vocab
):
"""
Load dict from vocab
...
...
@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab):
outstr
=
(
"%s
\t
%s
\n
"
%
(
k
,
v
)).
encode
(
"gb18030"
)
fout
.
write
(
outstr
)
def
build_dict
(
fname
):
"""
build word dict using trainset
...
...
@@ -88,7 +92,8 @@ def build_dict(fname):
with
open
(
fname
,
"r"
)
as
fin
:
for
line
in
fin
:
try
:
words
=
line
.
strip
(
"
\r\n
"
).
decode
(
"gb18030"
).
split
(
"
\t
"
)[
1
].
split
(
" "
)
words
=
line
.
strip
(
"
\r\n
"
).
decode
(
"gb18030"
).
split
(
"
\t
"
)[
1
].
split
(
" "
)
except
:
sys
.
stderr
.
write
(
"[warning] build_dict: decode error
\n
"
)
continue
...
...
@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False):
continue
label
=
int
(
cols
[
0
])
wids
=
[
word_dict
[
x
]
if
x
in
word_dict
else
unk_id
for
x
in
cols
[
1
].
split
(
" "
)]
wids
=
[
word_dict
[
x
]
if
x
in
word_dict
else
unk_id
for
x
in
cols
[
1
].
split
(
" "
)
]
all_data
.
append
((
wids
,
label
))
random
.
shuffle
(
all_data
)
...
...
@@ -141,11 +149,12 @@ def data_reader(fname, word_dict, is_dir=False):
def
reader
():
for
doc
,
label
in
all_data
:
yield
doc
,
label
return
reader
def
scdb_train_data
(
train_dir
=
"scdb_data/train_set/corpus.train.seg"
,
w_dict
=
None
):
def
scdb_train_data
(
train_dir
=
"scdb_data/train_set/corpus.train.seg"
,
w_dict
=
None
):
"""
create train data
"""
...
...
@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict):
return
data_reader
(
test_file
,
w_dict
)
def
bow_net
(
data
,
label
,
def
bow_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -169,27 +179,21 @@ def bow_net(data, label,
"""
bow net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
cnn_net
(
data
,
label
,
def
cnn_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -199,123 +203,107 @@ def cnn_net(data, label,
"""
conv net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
bilstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
def
bilstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
rfc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
rfc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
rlstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
rfc0
,
size
=
hid_dim
*
4
,
is_reverse
=
True
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
rlstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
rfc0
,
size
=
hid_dim
*
4
,
is_reverse
=
True
)
lstm_last
=
fluid
.
layers
.
sequence_last_step
(
input
=
lstm_h
)
rlstm_last
=
fluid
.
layers
.
sequence_last_step
(
input
=
rlstm_h
)
lstm_last_tanh
=
fluid
.
layers
.
tanh
(
lstm_last
)
rlstm_last_tanh
=
fluid
.
layers
.
tanh
(
rlstm_last
)
lstm_concat
=
fluid
.
layers
.
concat
(
input
=
[
lstm_last
,
rlstm_last
],
axis
=
1
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_concat
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_concat
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
gru_net
(
data
,
label
,
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -325,38 +313,30 @@ def gru_net(data, label,
"""
gru net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
"""
inference function
"""
...
...
@@ -366,23 +346,23 @@ def infer(test_reader,
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
class2_list
,
class3_list
=
[],
[]
for
each_test_reader
in
test_reader
:
class2_acc
,
class3_acc
=
0.0
,
0.0
total_count
,
neu_count
=
0
,
0
for
data
in
each_test_reader
():
pred
=
exe
.
run
(
inference_program
,
feed
=
data2pred
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
feed
=
data2pred
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
for
i
,
val
in
enumerate
(
data
):
pos_score
=
pred
[
0
][
i
,
1
]
true_label
=
val
[
1
]
...
...
@@ -402,7 +382,7 @@ def infer(test_reader,
neu_count
+=
1
total_count
+=
len
(
data
)
class2_acc
=
class2_acc
/
(
total_count
-
neu_count
)
class3_acc
=
class3_acc
/
total_count
class2_list
.
append
(
class2_acc
)
...
...
@@ -410,45 +390,39 @@ def infer(test_reader,
class2_acc
=
sum
(
class2_list
)
/
len
(
class2_list
)
class3_acc
=
sum
(
class3_list
)
/
len
(
class3_list
)
print
(
"[test info] model_path: %s, class2_acc: %f, class3_acc: %f"
%
(
model_path
,
class2_acc
,
class3_acc
))
print
(
"[test info] model_path: %s, class2_acc: %f, class3_acc: %f"
%
(
model_path
,
class2_acc
,
class3_acc
))
def
start_train
(
train_reader
,
test_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
test_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
"""
train network
"""
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
,
acc
,
pred
=
network
(
data
,
label
,
len
(
word_dict
)
+
1
)
cost
,
acc
,
pred
=
network
(
data
,
label
,
len
(
word_dict
)
+
1
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
lr
)
sgd_optimizer
.
minimize
(
cost
)
place
=
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
start_exe
=
fluid
.
Executor
(
place
)
start_exe
.
run
(
fluid
.
default_startup_program
())
exe
=
fluid
.
ParallelExecutor
(
use_cuda
,
loss_name
=
cost
.
name
)
for
pass_id
in
xrange
(
pass_num
):
total_acc
,
total_cost
,
total_count
,
avg_cost
,
avg_acc
=
0.0
,
0.0
,
0.0
,
0.0
,
0.0
...
...
@@ -459,24 +433,22 @@ def start_train(train_reader,
total_cost
+=
cost_val_list
.
sum
()
*
len
(
data
)
total_acc
+=
acc_val_list
.
sum
()
*
len
(
data
)
total_count
+=
len
(
data
)
avg_cost
=
total_cost
/
total_count
avg_acc
=
total_acc
/
total_count
print
(
"[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
print
(
"[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
gpu_place
=
fluid
.
CUDAPlace
(
0
)
save_exe
=
fluid
.
Executor
(
gpu_place
)
epoch_model
=
save_dirname
+
"/"
+
"epoch"
+
str
(
pass_id
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
],
pred
,
save_exe
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
],
pred
,
save_exe
)
infer
(
test_reader
,
False
,
epoch_model
)
def
train_net
(
vocab
=
"./thirdparty/train.vocab"
,
train_dir
=
"./train"
,
test_list
=
[
"car"
,
"spot"
,
"weibo"
,
"lbs"
]):
train_dir
=
"./train"
,
test_list
=
[
"car"
,
"spot"
,
"weibo"
,
"lbs"
]):
"""
w_dict = scdb_word_dict(vocab=vocab)
test_files = [ "./thirdparty" + os.sep + f for f in test_list]
...
...
@@ -497,12 +469,20 @@ def train_net(vocab="./thirdparty/train.vocab",
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
test
(
w_dict
),
buf_size
=
50000
),
paddle
.
dataset
.
imdb
.
test
(
w_dict
),
buf_size
=
50000
),
batch_size
=
128
)
test_reader
=
[
test_reader
]
start_train
(
train_reader
,
test_reader
,
w_dict
,
bilstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"scdb_bilstm_model"
,
lr
=
0.05
,
pass_num
=
10
,
batch_size
=
256
)
start_train
(
train_reader
,
test_reader
,
w_dict
,
bilstm_net
,
use_cuda
=
True
,
parallel
=
False
,
save_dirname
=
"scdb_bilstm_model"
,
lr
=
0.05
,
pass_num
=
10
,
batch_size
=
256
)
if
__name__
==
"__main__"
:
...
...
fluid/text_classification/clouds/scdb_single_card.py
浏览文件 @
e56ead99
...
...
@@ -9,6 +9,7 @@ import os
import
json
import
random
def
to_lodtensor
(
data
,
place
):
"""
convert to LODtensor
...
...
@@ -45,20 +46,22 @@ def data2tensor(data, place):
"""
data2tensor
"""
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
return
{
"words"
:
input_seq
,
"label"
:
y_data
}
def
data2pred
(
data
,
place
):
"""
data2tensor
"""
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
return
{
"words"
:
input_seq
}
def
load_dict
(
vocab
):
"""
Load dict from vocab
...
...
@@ -80,6 +83,7 @@ def save_dict(word_dict, vocab):
outstr
=
(
"%s
\t
%s
\n
"
%
(
k
,
v
)).
encode
(
"gb18030"
)
fout
.
write
(
outstr
)
def
build_dict
(
fname
):
"""
build word dict using trainset
...
...
@@ -88,7 +92,8 @@ def build_dict(fname):
with
open
(
fname
,
"r"
)
as
fin
:
for
line
in
fin
:
try
:
words
=
line
.
strip
(
"
\r\n
"
).
decode
(
"gb18030"
).
split
(
"
\t
"
)[
1
].
split
(
" "
)
words
=
line
.
strip
(
"
\r\n
"
).
decode
(
"gb18030"
).
split
(
"
\t
"
)[
1
].
split
(
" "
)
except
:
sys
.
stderr
.
write
(
"[warning] build_dict: decode error
\n
"
)
continue
...
...
@@ -133,7 +138,10 @@ def data_reader(fname, word_dict, is_dir=False):
continue
label
=
int
(
cols
[
0
])
wids
=
[
word_dict
[
x
]
if
x
in
word_dict
else
unk_id
for
x
in
cols
[
1
].
split
(
" "
)]
wids
=
[
word_dict
[
x
]
if
x
in
word_dict
else
unk_id
for
x
in
cols
[
1
].
split
(
" "
)
]
all_data
.
append
((
wids
,
label
))
random
.
shuffle
(
all_data
)
...
...
@@ -141,11 +149,12 @@ def data_reader(fname, word_dict, is_dir=False):
def
reader
():
for
doc
,
label
in
all_data
:
yield
doc
,
label
return
reader
def
scdb_train_data
(
train_dir
=
"scdb_data/train_set/corpus.train.seg"
,
w_dict
=
None
):
def
scdb_train_data
(
train_dir
=
"scdb_data/train_set/corpus.train.seg"
,
w_dict
=
None
):
"""
create train data
"""
...
...
@@ -160,7 +169,8 @@ def scdb_test_data(test_file, w_dict):
return
data_reader
(
test_file
,
w_dict
)
def
bow_net
(
data
,
label
,
def
bow_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -169,27 +179,21 @@ def bow_net(data, label,
"""
bow net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
bow
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
bow_tanh
=
fluid
.
layers
.
tanh
(
bow
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
bow_tanh
,
size
=
hid_dim
,
act
=
"tanh"
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
hid_dim2
,
act
=
"tanh"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_2
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
cnn_net
(
data
,
label
,
def
cnn_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -199,123 +203,107 @@ def cnn_net(data, label,
"""
conv net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
hid_dim
,
filter_size
=
win_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
hid_dim2
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
bilstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
def
bilstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
"""
lstm net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
rfc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
rfc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
,
act
=
'tanh'
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
rlstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
rfc0
,
size
=
hid_dim
*
4
,
is_reverse
=
True
)
rlstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
rfc0
,
size
=
hid_dim
*
4
,
is_reverse
=
True
)
lstm_last
=
fluid
.
layers
.
sequence_last_step
(
input
=
lstm_h
)
rlstm_last
=
fluid
.
layers
.
sequence_last_step
(
input
=
rlstm_h
)
lstm_last_tanh
=
fluid
.
layers
.
tanh
(
lstm_last
)
rlstm_last_tanh
=
fluid
.
layers
.
tanh
(
rlstm_last
)
lstm_concat
=
fluid
.
layers
.
concat
(
input
=
[
lstm_last
,
rlstm_last
],
axis
=
1
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_concat
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_concat
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
gru_net
(
data
,
label
,
def
gru_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
...
...
@@ -325,39 +313,30 @@ def gru_net(data, label,
"""
gru net
"""
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
3
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_h
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc0
,
size
=
hid_dim
,
is_reverse
=
False
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max
=
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
gru_max_tanh
=
fluid
.
layers
.
tanh
(
gru_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
fc1
=
fluid
.
layers
.
fc
(
input
=
gru_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
,
prediction
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
def
infer
(
test_reader
,
use_cuda
,
model_path
=
None
):
"""
inference function
"""
...
...
@@ -367,23 +346,23 @@ def infer(test_reader,
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
inference_scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
inference_scope
):
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
model_path
,
exe
)
class2_list
,
class3_list
=
[],
[]
for
each_test_reader
in
test_reader
:
class2_acc
,
class3_acc
=
0.0
,
0.0
total_count
,
neu_count
=
0
,
0
for
data
in
each_test_reader
():
pred
=
exe
.
run
(
inference_program
,
feed
=
data2pred
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
feed
=
data2pred
(
data
,
place
),
fetch_list
=
fetch_targets
,
return_numpy
=
True
)
for
i
,
val
in
enumerate
(
data
):
pos_score
=
pred
[
0
][
i
,
1
]
true_label
=
val
[
1
]
...
...
@@ -403,7 +382,7 @@ def infer(test_reader,
neu_count
+=
1
total_count
+=
len
(
data
)
class2_acc
=
class2_acc
/
(
total_count
-
neu_count
)
class3_acc
=
class3_acc
/
total_count
class2_list
.
append
(
class2_acc
)
...
...
@@ -411,35 +390,29 @@ def infer(test_reader,
class2_acc
=
sum
(
class2_list
)
/
len
(
class2_list
)
class3_acc
=
sum
(
class3_list
)
/
len
(
class3_list
)
print
(
"[test info] model_path: %s, class2_acc: %f, class3_acc: %f"
%
(
model_path
,
class2_acc
,
class3_acc
))
print
(
"[test info] model_path: %s, class2_acc: %f, class3_acc: %f"
%
(
model_path
,
class2_acc
,
class3_acc
))
def
start_train
(
train_reader
,
test_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
test_reader
,
word_dict
,
network
,
use_cuda
,
parallel
,
save_dirname
,
lr
=
0.2
,
batch_size
=
128
,
pass_num
=
30
):
"""
train network
"""
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
,
acc
,
pred
=
network
(
data
,
label
,
len
(
word_dict
)
+
1
)
cost
,
acc
,
pred
=
network
(
data
,
label
,
len
(
word_dict
)
+
1
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
lr
)
sgd_optimizer
.
minimize
(
cost
)
...
...
@@ -453,41 +426,46 @@ def start_train(train_reader,
data_size
,
data_count
,
total_acc
,
total_cost
=
0
,
0
,
0.0
,
0.0
for
data
in
train_reader
():
avg_cost_np
,
avg_acc_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
data_size
=
len
(
data
)
total_acc
+=
data_size
*
avg_acc_np
total_cost
+=
data_size
*
avg_cost_np
data_count
+=
data_size
avg_cost
=
total_cost
/
data_count
avg_acc
=
total_acc
/
data_count
print
(
"[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
print
(
"[train info]: pass_id: %d, avg_acc: %f, avg_cost: %f"
%
(
pass_id
,
avg_acc
,
avg_cost
))
epoch_model
=
save_dirname
+
"/"
+
"epoch"
+
str
(
pass_id
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
],
pred
,
exe
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"words"
],
pred
,
exe
)
infer
(
test_reader
,
False
,
epoch_model
)
def
train_net
(
vocab
=
"./thirdparty/train.vocab"
,
train_dir
=
"./train"
,
test_list
=
[
"car"
,
"spot"
,
"weibo"
,
"lbs"
]):
train_dir
=
"./train"
,
test_list
=
[
"car"
,
"spot"
,
"weibo"
,
"lbs"
]):
w_dict
=
scdb_word_dict
(
vocab
=
vocab
)
test_files
=
[
"./thirdparty"
+
os
.
sep
+
f
for
f
in
test_list
]
test_files
=
[
"./thirdparty"
+
os
.
sep
+
f
for
f
in
test_list
]
train_reader
=
paddle
.
batch
(
scdb_train_data
(
train_dir
,
w_dict
),
batch_size
=
256
)
scdb_train_data
(
train_dir
,
w_dict
),
batch_size
=
256
)
test_reader
=
[
paddle
.
batch
(
scdb_test_data
(
test_file
,
w_dict
),
batch_size
=
50
)
\
for
test_file
in
test_files
]
start_train
(
train_reader
,
test_reader
,
w_dict
,
bow_net
,
use_cuda
=
False
,
parallel
=
False
,
save_dirname
=
"scdb_bow_model"
,
lr
=
0.002
,
pass_num
=
10
,
batch_size
=
256
)
start_train
(
train_reader
,
test_reader
,
w_dict
,
bow_net
,
use_cuda
=
False
,
parallel
=
False
,
save_dirname
=
"scdb_bow_model"
,
lr
=
0.002
,
pass_num
=
10
,
batch_size
=
256
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录