Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e4f6ffa1
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e4f6ffa1
编写于
7月 10, 2018
作者:
W
walloollaw
提交者:
qingqing01
7月 10, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
caffe2fluid:support ssd model conversion (#1039)
上级
e7d1378f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
75 addition
and
46 deletion
+75
-46
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
...lassification/caffe2fluid/kaffe/custom_layers/__init__.py
+5
-0
fluid/image_classification/caffe2fluid/kaffe/custom_layers/flatten.py
...classification/caffe2fluid/kaffe/custom_layers/flatten.py
+8
-15
fluid/image_classification/caffe2fluid/kaffe/custom_layers/reshape.py
...classification/caffe2fluid/kaffe/custom_layers/reshape.py
+12
-2
fluid/image_classification/caffe2fluid/kaffe/layers.py
fluid/image_classification/caffe2fluid/kaffe/layers.py
+24
-5
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
.../image_classification/caffe2fluid/kaffe/paddle/network.py
+3
-1
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
...ge_classification/caffe2fluid/kaffe/paddle/transformer.py
+9
-19
fluid/image_classification/caffe2fluid/kaffe/shapes.py
fluid/image_classification/caffe2fluid/kaffe/shapes.py
+12
-4
fluid/image_classification/caffe2fluid/kaffe/transformers.py
fluid/image_classification/caffe2fluid/kaffe/transformers.py
+2
-0
未找到文件。
fluid/image_classification/caffe2fluid/kaffe/custom_layers/__init__.py
浏览文件 @
e4f6ffa1
...
@@ -8,6 +8,11 @@ import axpy
...
@@ -8,6 +8,11 @@ import axpy
import
flatten
import
flatten
import
argmax
import
argmax
import
reshape
import
reshape
import
roipooling
import
priorbox
import
permute
import
detection_out
import
normalize
#custom layer import ends
#custom layer import ends
...
...
fluid/image_classification/caffe2fluid/kaffe/custom_layers/flatten.py
浏览文件 @
e4f6ffa1
...
@@ -4,11 +4,6 @@
...
@@ -4,11 +4,6 @@
from
.register
import
register
from
.register
import
register
def
import_fluid
():
import
paddle.fluid
as
fluid
return
fluid
def
flatten_shape
(
input_shape
,
axis
=
1
,
end_axis
=-
1
):
def
flatten_shape
(
input_shape
,
axis
=
1
,
end_axis
=-
1
):
""" calculate the output shape of this layer using input shape
""" calculate the output shape of this layer using input shape
...
@@ -28,7 +23,7 @@ def flatten_shape(input_shape, axis=1, end_axis=-1):
...
@@ -28,7 +23,7 @@ def flatten_shape(input_shape, axis=1, end_axis=-1):
start_axis
+=
len
(
input_shape
)
start_axis
+=
len
(
input_shape
)
if
end_axis
<
0
:
if
end_axis
<
0
:
end_axis
+=
len
(
input_shape
)
end_axis
+=
len
(
input_shape
)
+
1
assert
start_axis
<=
end_axis
,
'invalid axis[%d] or end_axis[%d] params'
\
assert
start_axis
<=
end_axis
,
'invalid axis[%d] or end_axis[%d] params'
\
%
(
start_axis
,
end_axis
)
%
(
start_axis
,
end_axis
)
...
@@ -52,18 +47,16 @@ def flatten_layer(input, name, axis=1, end_axis=-1):
...
@@ -52,18 +47,16 @@ def flatten_layer(input, name, axis=1, end_axis=-1):
Returns:
Returns:
output (variable): output variable for this layer
output (variable): output variable for this layer
"""
"""
fluid
=
import_fluid
()
import
paddle.fluid
as
fluid
input_shape
=
list
(
input
.
shape
)
input_shape
=
list
(
input
.
shape
)
dims
=
len
(
input_shape
)
start_axis
=
axis
if
axis
>=
0
else
axis
+
dims
end_axis
=
end_axis
if
end_axis
>=
0
else
end_axis
+
dims
assert
start_axis
<=
end_axis
,
'invalid axis or end_axis params'
if
input_shape
[
0
]
==
-
1
:
output_shape
=
input_shape
[
0
:
start_axis
]
input_shape
[
0
]
=
1
flat_sz
=
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
start_axis
:
end_axis
])
output_shape
=
flatten_shape
(
input_shape
,
axis
=
axis
,
end_axis
=
end_axis
)
output_shape
+=
[
flat_sz
]
output_shape
[
0
]
=
-
1
output_shape
+=
input_shape
[
end_axis
:
-
1
]
else
:
output_shape
=
flatten_shape
(
input_shape
,
axis
=
axis
,
end_axis
=
end_axis
)
output
=
fluid
.
layers
.
reshape
(
input
,
shape
=
output_shape
,
name
=
name
)
output
=
fluid
.
layers
.
reshape
(
input
,
shape
=
output_shape
,
name
=
name
)
...
...
fluid/image_classification/caffe2fluid/kaffe/custom_layers/reshape.py
浏览文件 @
e4f6ffa1
...
@@ -68,15 +68,23 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
...
@@ -68,15 +68,23 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
top_dim
=
shape
[
'dim'
][
i
]
top_dim
=
shape
[
'dim'
][
i
]
if
top_dim
==
0
:
if
top_dim
==
0
:
copy_axes
.
append
(
i
)
copy_axes
.
append
(
i
)
copy_axis_index
=
start_axis
+
i
output_shape
[
copy_axis_index
]
=
input_shape
[
copy_axis_index
]
elif
top_dim
==
-
1
:
elif
top_dim
==
-
1
:
assert
inferred_axis
==
-
1
,
"[Reshape]new shape contains multiple -1 dims"
assert
inferred_axis
==
-
1
,
"[Reshape]new shape contains multiple -1 dims"
inferred_axis
=
i
else
:
else
:
constant_count
*=
top_dim
constant_count
*=
top_dim
if
inferred_axis
>=
0
:
if
inferred_axis
>=
0
:
explicit_count
=
constant_count
explicit_count
=
constant_count
explicit_count
*=
count
(
input_shape
[
0
:
start_axis
])
l
=
input_shape
[
0
:
start_axis
]
explicit_count
*=
count
(
input_shape
[
end_axis
:])
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
l
=
input_shape
[
end_axis
:]
if
len
(
l
)
>
0
:
explicit_count
*=
count
(
l
)
for
i
in
range
(
len
(
copy_axes
)):
for
i
in
range
(
len
(
copy_axes
)):
explicit_count
*=
output_shape
[
start_axis
+
copy_axes
[
i
]]
explicit_count
*=
output_shape
[
start_axis
+
copy_axes
[
i
]]
...
@@ -84,6 +92,7 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
...
@@ -84,6 +92,7 @@ def reshape_shape(input_sp, shape, axis=0, num_axes=-1):
assert
input_count
%
explicit_count
==
0
,
"[Reshape]botom count[%d] "
\
assert
input_count
%
explicit_count
==
0
,
"[Reshape]botom count[%d] "
\
"must be divisible by product of the specified dimensions[%d] "
\
"must be divisible by product of the specified dimensions[%d] "
\
%
(
input_count
,
explicit_count
)
%
(
input_count
,
explicit_count
)
output_shape
[
start_axis
+
inferred_axis
]
=
input_count
/
explicit_count
output_count
=
count
(
output_shape
)
output_count
=
count
(
output_shape
)
assert
output_count
==
input_count
,
"[Reshape]output count[%d] must match input count[%d]"
%
(
assert
output_count
==
input_count
,
"[Reshape]output count[%d] must match input count[%d]"
%
(
...
@@ -117,6 +126,7 @@ def reshape_layer(input, name, shape, axis=0, num_axes=-1):
...
@@ -117,6 +126,7 @@ def reshape_layer(input, name, shape, axis=0, num_axes=-1):
output_shape
=
reshape_shape
(
input_shape
,
shape
,
axis
,
num_axes
)
output_shape
=
reshape_shape
(
input_shape
,
shape
,
axis
,
num_axes
)
output
=
fluid
.
layers
.
reshape
(
input
,
shape
=
output_shape
,
name
=
name
)
output
=
fluid
.
layers
.
reshape
(
input
,
shape
=
output_shape
,
name
=
name
)
return
output
return
output
...
...
fluid/image_classification/caffe2fluid/kaffe/layers.py
浏览文件 @
e4f6ffa1
...
@@ -179,6 +179,9 @@ class LayerAdapter(object):
...
@@ -179,6 +179,9 @@ class LayerAdapter(object):
@
property
@
property
def
parameters
(
self
):
def
parameters
(
self
):
name
=
NodeDispatch
.
get_handler_name
(
self
.
kind
)
name
=
NodeDispatch
.
get_handler_name
(
self
.
kind
)
if
self
.
kind
.
lower
()
==
"normalize"
:
name
=
"norm"
name
=
'_'
.
join
((
name
,
'param'
))
name
=
'_'
.
join
((
name
,
'param'
))
try
:
try
:
return
getattr
(
self
.
layer
,
name
)
return
getattr
(
self
.
layer
,
name
)
...
@@ -217,9 +220,25 @@ class LayerAdapter(object):
...
@@ -217,9 +220,25 @@ class LayerAdapter(object):
params
.
stride_w
,
params
.
stride
,
1
,
default
=
1
)
params
.
stride_w
,
params
.
stride
,
1
,
default
=
1
)
p_h
=
self
.
get_kernel_value
(
params
.
pad_h
,
params
.
pad
,
0
,
default
=
0
)
p_h
=
self
.
get_kernel_value
(
params
.
pad_h
,
params
.
pad
,
0
,
default
=
0
)
p_w
=
self
.
get_kernel_value
(
params
.
pad_w
,
params
.
pad
,
1
,
default
=
0
)
p_w
=
self
.
get_kernel_value
(
params
.
pad_w
,
params
.
pad
,
1
,
default
=
0
)
return
KernelParameters
(
k_h
,
k_w
,
s_h
,
s_w
,
p_h
,
p_w
)
KernelParameters
=
namedtuple
(
'KernelParameters'
,
[
dila_h
=
dila_w
=
1
'kernel_h'
,
'kernel_w'
,
'stride_h'
,
'stride_w'
,
'pad_h'
,
'pad_w'
if
self
.
kind
in
(
NodeKind
.
Convolution
,
):
])
dila_len
=
len
(
params
.
dilation
)
if
dila_len
==
2
:
dila_h
=
params
.
dilation
[
0
]
dila_w
=
params
.
dilation
[
1
]
elif
dila_len
==
1
:
dila_h
=
dila_w
=
params
.
dilation
[
0
]
else
:
assert
dila_len
==
0
,
"invalid length[%s] of dilation in convolution"
%
(
dila_len
)
return
KernelParameters
(
k_h
,
k_w
,
s_h
,
s_w
,
p_h
,
p_w
,
dila_h
,
dila_w
)
KernelParameters
=
namedtuple
(
'KernelParameters'
,
[
'kernel_h'
,
'kernel_w'
,
'stride_h'
,
'stride_w'
,
'pad_h'
,
'pad_w'
,
'dila_h'
,
'dila_w'
],
)
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
浏览文件 @
e4f6ffa1
...
@@ -91,7 +91,7 @@ class Network(object):
...
@@ -91,7 +91,7 @@ class Network(object):
name
=
'%s_%s'
%
(
op_name
,
param_name
)
name
=
'%s_%s'
%
(
op_name
,
param_name
)
v
=
fluid
.
global_scope
().
find_var
(
name
)
v
=
fluid
.
global_scope
().
find_var
(
name
)
w
=
v
.
get_tensor
()
w
=
v
.
get_tensor
()
w
.
set
(
data
,
place
)
w
.
set
(
data
.
reshape
(
w
.
shape
())
,
place
)
except
ValueError
:
except
ValueError
:
if
not
ignore_missing
:
if
not
ignore_missing
:
raise
raise
...
@@ -144,6 +144,7 @@ class Network(object):
...
@@ -144,6 +144,7 @@ class Network(object):
relu
=
True
,
relu
=
True
,
relu_negative_slope
=
0.0
,
relu_negative_slope
=
0.0
,
padding
=
None
,
padding
=
None
,
dilation
=
1
,
group
=
1
,
group
=
1
,
biased
=
True
):
biased
=
True
):
if
padding
is
None
:
if
padding
is
None
:
...
@@ -173,6 +174,7 @@ class Network(object):
...
@@ -173,6 +174,7 @@ class Network(object):
num_filters
=
c_o
,
num_filters
=
c_o
,
stride
=
[
s_h
,
s_w
],
stride
=
[
s_h
,
s_w
],
padding
=
padding
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
group
,
groups
=
group
,
param_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
"weights"
),
param_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
"weights"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
"biases"
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
prefix
+
"biases"
),
...
...
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
浏览文件 @
e4f6ffa1
...
@@ -9,21 +9,6 @@ from ..transformers import (DataInjector, DataReshaper, NodeRenamer,
...
@@ -9,21 +9,6 @@ from ..transformers import (DataInjector, DataReshaper, NodeRenamer,
from
.
import
network
from
.
import
network
def
get_padding_type
(
kernel_params
,
input_shape
,
output_shape
):
'''Translates Caffe's numeric padding to one of ('SAME', 'VALID').
Caffe supports arbitrary padding values, while Paddle only
supports 'SAME' and 'VALID' modes. So, not all Caffe paddings
can be translated to Paddle. There are some subtleties to
how the padding edge-cases are handled. These are described here:
https://github.com/Yangqing/caffe2/blob/master/caffe2/proto/caffe2_legacy.proto
'''
k_h
,
k_w
,
s_h
,
s_w
,
p_h
,
p_w
=
kernel_params
if
p_h
>
0
or
p_w
>
0
:
return
[
p_h
,
p_w
]
else
:
return
None
class
PaddleNode
(
object
):
class
PaddleNode
(
object
):
'''An intermediate representation for Paddle operations.'''
'''An intermediate representation for Paddle operations.'''
...
@@ -78,10 +63,11 @@ class PaddleMapper(NodeMapper):
...
@@ -78,10 +63,11 @@ class PaddleMapper(NodeMapper):
def
get_kernel_params
(
self
,
node
):
def
get_kernel_params
(
self
,
node
):
kernel_params
=
node
.
layer
.
kernel_parameters
kernel_params
=
node
.
layer
.
kernel_parameters
input_shape
=
node
.
get_only_parent
().
output_shape
input_shape
=
node
.
get_only_parent
().
output_shape
padding
=
get_padding_type
(
kernel_params
,
input_shape
,
padding
=
[
kernel_params
.
pad_h
,
kernel_params
.
pad_w
]
node
.
output_shape
)
if
padding
[
0
]
==
0
and
padding
[
1
]
==
0
:
# Only emit the padding if it's not the default value.
padding
=
{}
padding
=
{
'padding'
:
padding
}
if
padding
is
not
None
else
{}
else
:
padding
=
{
'padding'
:
padding
}
return
(
kernel_params
,
padding
)
return
(
kernel_params
,
padding
)
def
map_convolution
(
self
,
node
):
def
map_convolution
(
self
,
node
):
...
@@ -95,6 +81,10 @@ class PaddleMapper(NodeMapper):
...
@@ -95,6 +81,10 @@ class PaddleMapper(NodeMapper):
kwargs
[
'group'
]
=
group
kwargs
[
'group'
]
=
group
if
not
node
.
parameters
.
bias_term
:
if
not
node
.
parameters
.
bias_term
:
kwargs
[
'biased'
]
=
False
kwargs
[
'biased'
]
=
False
if
kernel_params
.
dila_h
!=
1
or
kernel_params
.
dila_w
!=
1
:
kwargs
[
'dilation'
]
=
(
kernel_params
.
dila_h
,
kernel_params
.
dila_w
)
assert
kernel_params
.
kernel_h
==
h
assert
kernel_params
.
kernel_h
==
h
assert
kernel_params
.
kernel_w
==
w
assert
kernel_params
.
kernel_w
==
w
return
MaybeActivated
(
node
)(
return
MaybeActivated
(
node
)(
...
...
fluid/image_classification/caffe2fluid/kaffe/shapes.py
浏览文件 @
e4f6ffa1
...
@@ -6,6 +6,8 @@ from .errors import KaffeError
...
@@ -6,6 +6,8 @@ from .errors import KaffeError
Tensor4DShape
=
namedtuple
(
'Tensor4DShape'
,
Tensor4DShape
=
namedtuple
(
'Tensor4DShape'
,
[
'batch_size'
,
'channels'
,
'height'
,
'width'
])
[
'batch_size'
,
'channels'
,
'height'
,
'width'
])
Tensor3DShape
=
namedtuple
(
'Tensor3DShape'
,
[
'batch_size'
,
'data1'
,
'data2'
])
Tensor2DShape
=
namedtuple
(
'Tensor2DShape'
,
[
'batch_size'
,
'data'
])
Tensor2DShape
=
namedtuple
(
'Tensor2DShape'
,
[
'batch_size'
,
'data'
])
ScalarShape
=
namedtuple
(
'ScalarShape'
,
[
'batch_size'
])
ScalarShape
=
namedtuple
(
'ScalarShape'
,
[
'batch_size'
])
...
@@ -14,6 +16,8 @@ ScalarShape = namedtuple('ScalarShape', ['batch_size'])
...
@@ -14,6 +16,8 @@ ScalarShape = namedtuple('ScalarShape', ['batch_size'])
def
make_tensor
(
batch_size
,
d1
=
None
,
d2
=
None
,
d3
=
None
):
def
make_tensor
(
batch_size
,
d1
=
None
,
d2
=
None
,
d3
=
None
):
if
d3
is
not
None
:
if
d3
is
not
None
:
return
Tensor4DShape
(
batch_size
,
d1
,
d2
,
d3
)
return
Tensor4DShape
(
batch_size
,
d1
,
d2
,
d3
)
elif
d1
is
not
None
and
d2
is
not
None
:
return
Tensor3DShape
(
batch_size
,
d1
,
d2
)
elif
d1
is
not
None
and
d2
is
None
:
elif
d1
is
not
None
and
d2
is
None
:
return
Tensor2DShape
(
batch_size
,
d1
)
return
Tensor2DShape
(
batch_size
,
d1
)
elif
d1
is
None
and
d2
is
None
and
d3
is
None
:
elif
d1
is
None
and
d2
is
None
and
d3
is
None
:
...
@@ -24,10 +28,14 @@ def make_tensor(batch_size, d1=None, d2=None, d3=None):
...
@@ -24,10 +28,14 @@ def make_tensor(batch_size, d1=None, d2=None, d3=None):
def
get_filter_output_shape
(
i_h
,
i_w
,
params
,
round_func
):
def
get_filter_output_shape
(
i_h
,
i_w
,
params
,
round_func
):
o_h
=
(
i_h
+
2
*
params
.
pad_h
-
params
.
kernel_h
dila_h
=
getattr
(
params
,
'dila_h'
,
1
)
)
/
float
(
params
.
stride_h
)
+
1
dila_w
=
getattr
(
params
,
'dila_w'
,
1
)
o_w
=
(
i_w
+
2
*
params
.
pad_w
-
params
.
kernel_w
)
/
float
(
params
.
stride_w
)
+
1
o_h
=
(
i_h
+
2
*
params
.
pad_h
-
(
dila_h
*
(
params
.
kernel_h
-
1
)
+
1
))
/
float
(
params
.
stride_h
)
+
1
o_w
=
(
i_w
+
2
*
params
.
pad_w
-
(
dila_w
*
(
params
.
kernel_w
-
1
)
+
1
))
/
float
(
params
.
stride_w
)
+
1
return
(
int
(
round_func
(
o_h
)),
int
(
round_func
(
o_w
)))
return
(
int
(
round_func
(
o_h
)),
int
(
round_func
(
o_w
)))
...
...
fluid/image_classification/caffe2fluid/kaffe/transformers.py
浏览文件 @
e4f6ffa1
...
@@ -337,6 +337,8 @@ class ParameterNamer(object):
...
@@ -337,6 +337,8 @@ class ParameterNamer(object):
names
=
(
'scale'
,
)
names
=
(
'scale'
,
)
if
getattr
(
node
.
parameters
,
'bias_term'
,
False
):
if
getattr
(
node
.
parameters
,
'bias_term'
,
False
):
names
=
(
'scale'
,
'offset'
)
names
=
(
'scale'
,
'offset'
)
elif
node
.
kind
==
"Normalize"
:
names
=
(
'scale'
,
)
else
:
else
:
warn
(
'Unhandled parameters when naming this it[%s]'
%
warn
(
'Unhandled parameters when naming this it[%s]'
%
(
node
.
kind
))
(
node
.
kind
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录