Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
e463d56d
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e463d56d
编写于
4月 22, 2019
作者:
J
junjun315
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dygraph models:mnist, test=develop
上级
85a5fbf4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
264 addition
and
0 deletion
+264
-0
fluid/dygraph/mnist/README_cn.md
fluid/dygraph/mnist/README_cn.md
+62
-0
fluid/dygraph/mnist/image/infer_3.png
fluid/dygraph/mnist/image/infer_3.png
+0
-0
fluid/dygraph/mnist/mnist_dygraph.py
fluid/dygraph/mnist/mnist_dygraph.py
+202
-0
未找到文件。
fluid/dygraph/mnist/README_cn.md
0 → 100644
浏览文件 @
e463d56d
# MNIST
当我们学习编程的时候,编写的第一个程序一般是实现打印"Hello World"。而机器学习(或深度学习)的入门教程,一般都是 MNIST 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。
本页将介绍如何使用PaddlePaddle在DyGraph模式下实现MNIST,包括
[
安装
](
#installation
)
、
[
训练
](
#training-a-model
)
、
[
输出
](
#log
)
、
[
参数保存
](
#save
)
、
[
模型评估
](
#evaluation
)
。
---
## 内容
-
[
安装
](
#installation
)
-
[
训练
](
#training-a-model
)
-
[
输出
](
#log
)
## 安装
在当前目录下运行样例代码需要PadddlePaddle Fluid的v1.4.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据安装文档中的说明来更新PaddlePaddle。
## 训练
教程中使用
`paddle.dataset.mnist`
数据集作为训练数据,可以通过如下的方式启动训练:
```
env CUDA_VISIBLE_DEVICES=0 python mnist_dygraph.py
```
## 输出
执行训练开始后,将得到类似如下的输出。
```
Loss at epoch 0 step 0: [2.3043773]
Loss at epoch 0 step 100: [0.20764539]
Loss at epoch 0 step 200: [0.18648806]
Loss at epoch 0 step 300: [0.10279777]
Loss at epoch 0 step 400: [0.03940877]
...
```
## 参数保存
调用
`fluid.dygraph.save_persistables()`
接口可以把模型的参数进行保存。
```
python
fluid
.
dygraph
.
save_persistables
(
mnist
.
state_dict
(),
"save_dir"
)
```
## 测试
执行
`mnist.eval()`
可以切换至评估状态,即不更新只使用参数进行训练,通过这种方式进行测试或者评估。
```
python
mnist
.
eval
()
```
## 模型评估
我们使用手写数据集中的一张图片来进行评估。为了区别训练模型,我们使用
`with fluid.dygraph.guard()`
来切换到一个新的参数空间,然后构建一个用于评估的网络
`mnist_infer`
,并通过
`mnist_infer.load_dict()`
来加载使用
`fluid.dygraph.load_persistables`
读取的参数。然后用
`mnist_infer.eval()`
切换到评估。
```
python
with
fluid
.
dygraph
.
guard
():
mnist_infer
=
MNIST
(
"mnist"
)
# load checkpoint
mnist_infer
.
load_dict
(
fluid
.
dygraph
.
load_persistables
(
"save_dir"
))
# start evaluate mode
mnist_infer
.
eval
()
```
如果无意外,将可以看到预测的结果:
```
text
Inference result of image/infer_3.png is: 3
```
fluid/dygraph/mnist/image/infer_3.png
0 → 100644
浏览文件 @
e463d56d
7.2 KB
fluid/dygraph/mnist/mnist_dygraph.py
0 → 100644
浏览文件 @
e463d56d
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
from
PIL
import
Image
import
os
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.optimizer
import
AdamOptimizer
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.dygraph.base
import
to_variable
class
SimpleImgConvPool
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
MNIST
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
):
super
(
MNIST
,
self
).
__init__
(
name_scope
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
,
label
=
None
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
self
.
_fc
(
x
)
if
label
is
not
None
:
acc
=
fluid
.
layers
.
accuracy
(
input
=
x
,
label
=
label
)
return
x
,
acc
else
:
return
x
def
test_train
(
reader
,
model
,
batch_size
):
acc_set
=
[]
avg_loss_set
=
[]
for
batch_id
,
data
in
enumerate
(
reader
()):
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
batch_size
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
prediction
,
acc
=
model
(
img
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
acc_set
.
append
(
float
(
acc
.
numpy
()))
avg_loss_set
.
append
(
float
(
avg_loss
.
numpy
()))
# get test acc and loss
acc_val_mean
=
np
.
array
(
acc_set
).
mean
()
avg_loss_val_mean
=
np
.
array
(
avg_loss_set
).
mean
()
return
avg_loss_val_mean
,
acc_val_mean
def
train_mnist
():
epoch_num
=
5
BATCH_SIZE
=
64
with
fluid
.
dygraph
.
guard
():
mnist
=
MNIST
(
"mnist"
)
adam
=
AdamOptimizer
(
learning_rate
=
0.001
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
BATCH_SIZE
,
drop_last
=
True
)
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
BATCH_SIZE
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
stop_gradient
=
True
cost
,
acc
=
mnist
(
img
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
# save checkpoint
mnist
.
clear_gradients
()
if
batch_id
%
100
==
0
:
print
(
"Loss at epoch {} step {}: {:}"
.
format
(
epoch
,
batch_id
,
avg_loss
.
numpy
()))
mnist
.
eval
()
test_cost
,
test_acc
=
test_train
(
test_reader
,
mnist
,
BATCH_SIZE
)
mnist
.
train
()
print
(
"Loss at epoch {} , Test avg_loss is: {}, acc is: {}"
.
format
(
epoch
,
test_cost
,
test_acc
))
fluid
.
dygraph
.
save_persistables
(
mnist
.
state_dict
(),
"save_dir"
)
print
(
"checkpoint saved"
)
with
fluid
.
dygraph
.
guard
():
mnist_infer
=
MNIST
(
"mnist"
)
# load checkpoint
mnist_infer
.
load_dict
(
fluid
.
dygraph
.
load_persistables
(
"save_dir"
))
print
(
"checkpoint loaded"
)
# start evaluate mode
mnist_infer
.
eval
()
def
load_image
(
file
):
im
=
Image
.
open
(
file
).
convert
(
'L'
)
im
=
im
.
resize
((
28
,
28
),
Image
.
ANTIALIAS
)
im
=
np
.
array
(
im
).
reshape
(
1
,
1
,
28
,
28
).
astype
(
np
.
float32
)
im
=
im
/
255.0
*
2.0
-
1.0
return
im
cur_dir
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
tensor_img
=
load_image
(
cur_dir
+
'/image/infer_3.png'
)
results
=
mnist_infer
(
to_variable
(
tensor_img
))
lab
=
np
.
argsort
(
results
.
numpy
())
print
(
"Inference result of image/infer_3.png is: %d"
%
lab
[
0
][
-
1
])
if
__name__
==
'__main__'
:
train_mnist
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录