提交 dfbb22a9 编写于 作者: zhaoyijin666's avatar zhaoyijin666

图片加上引用说明

上级 529fcbee
...@@ -27,7 +27,7 @@ Youtube是世界最大的视频网站之一,其推荐系统帮助10亿以上 ...@@ -27,7 +27,7 @@ Youtube是世界最大的视频网站之一,其推荐系统帮助10亿以上
下图展示了整个推荐系统框图: 下图展示了整个推荐系统框图:
<p align="center"> <p align="center">
<img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/> <img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/>
Figure 1. 推荐系统框图 Figure 1. 推荐系统框图(出自论文[1])
</p> </p>
整个推荐系统有两部分组成: 召回(candidate generation/recall)和排序(ranking)。 整个推荐系统有两部分组成: 召回(candidate generation/recall)和排序(ranking)。
...@@ -46,7 +46,7 @@ Figure 1. 推荐系统框图 ...@@ -46,7 +46,7 @@ Figure 1. 推荐系统框图
下图展示了召回模型的网络结构: 下图展示了召回模型的网络结构:
<p align="center"> <p align="center">
<img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/> <img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/>
Figure 2. 召回模型网络结构 Figure 2. 召回模型网络结构(出自论文[1])
</p> </p>
- 输入层:用户的浏览序列、搜索序列、人口统计学特征、和其他上下文信息等 - 输入层:用户的浏览序列、搜索序列、人口统计学特征、和其他上下文信息等
......
...@@ -9,7 +9,7 @@ YouTube is the world's largest platform for creating, sharing and discovering vi ...@@ -9,7 +9,7 @@ YouTube is the world's largest platform for creating, sharing and discovering vi
The overall structure of the recommendation system is illustrated in Figure 1. The overall structure of the recommendation system is illustrated in Figure 1.
<p align="center"> <p align="center">
<img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/> <img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/>
Figure 1. Recommendation system architecture Figure 1. Recommendation system architecture[1]
</p> </p>
The system is comprised of two neural networks: one for candidate generation and one for ranking. The system is comprised of two neural networks: one for candidate generation and one for ranking.
...@@ -28,7 +28,7 @@ where ![](https://www.zhihu.com/equation?tex=%5Cmathbf%7Bu%7D%5Cin%20%5Cmathbb%7 ...@@ -28,7 +28,7 @@ where ![](https://www.zhihu.com/equation?tex=%5Cmathbf%7Bu%7D%5Cin%20%5Cmathbb%7
Figure 2 shows the general network architecture of candidate generation model: Figure 2 shows the general network architecture of candidate generation model:
<p align="center"> <p align="center">
<img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/> <img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/>
Figure 2. Candidate generation model architecture Figure 2. Candidate generation model architecture[1]
</p> </p>
- Input layer: A user's watch history is represented by a variable-length sequence of sparse video IDs, and search history is similarly represented by a variable-length sequence of search tokens. - Input layer: A user's watch history is represented by a variable-length sequence of sparse video IDs, and search history is similarly represented by a variable-length sequence of search tokens.
......
#!/usr/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
# Copyright (c) 2018 Baidu.com, Inc. All Rights Reserved
#
########################################################################
"""
File: test.py
Author: baidu(baidu@baidu.com)
Date: 2018/01/12 11:41:37
"""
import cPickle
#with open("./output/item_freq.pkl") as f:
with open("./data/nid_dict.pkl") as f:
item_freq = cPickle.load(f)
print item_freq
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册