提交 dfbb22a9 编写于 作者: zhaoyijin666's avatar zhaoyijin666

图片加上引用说明

上级 529fcbee
......@@ -27,7 +27,7 @@ Youtube是世界最大的视频网站之一,其推荐系统帮助10亿以上
下图展示了整个推荐系统框图:
<p align="center">
<img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/>
Figure 1. 推荐系统框图
Figure 1. 推荐系统框图(出自论文[1])
</p>
整个推荐系统有两部分组成: 召回(candidate generation/recall)和排序(ranking)。
......@@ -46,7 +46,7 @@ Figure 1. 推荐系统框图
下图展示了召回模型的网络结构:
<p align="center">
<img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/>
Figure 2. 召回模型网络结构
Figure 2. 召回模型网络结构(出自论文[1])
</p>
- 输入层:用户的浏览序列、搜索序列、人口统计学特征、和其他上下文信息等
......
......@@ -9,7 +9,7 @@ YouTube is the world's largest platform for creating, sharing and discovering vi
The overall structure of the recommendation system is illustrated in Figure 1.
<p align="center">
<img src="images/recommendation_system.png" width="500" height="300" hspace='10'/> <br/>
Figure 1. Recommendation system architecture
Figure 1. Recommendation system architecture[1]
</p>
The system is comprised of two neural networks: one for candidate generation and one for ranking.
......@@ -28,7 +28,7 @@ where ![](https://www.zhihu.com/equation?tex=%5Cmathbf%7Bu%7D%5Cin%20%5Cmathbb%7
Figure 2 shows the general network architecture of candidate generation model:
<p align="center">
<img src="images/model_network.png" width="600" height="500" hspace='10'/> <br/>
Figure 2. Candidate generation model architecture
Figure 2. Candidate generation model architecture[1]
</p>
- Input layer: A user's watch history is represented by a variable-length sequence of sparse video IDs, and search history is similarly represented by a variable-length sequence of search tokens.
......
#!/usr/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
# Copyright (c) 2018 Baidu.com, Inc. All Rights Reserved
#
########################################################################
"""
File: test.py
Author: baidu(baidu@baidu.com)
Date: 2018/01/12 11:41:37
"""
import cPickle
#with open("./output/item_freq.pkl") as f:
with open("./data/nid_dict.pkl") as f:
item_freq = cPickle.load(f)
print item_freq
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册