提交 de95c539 编写于 作者: G guosheng

Small fix in tf2paddle

上级 8090c270
......@@ -16,7 +16,7 @@
1. TensorFlow网络配置中同一Operator内的`Variable`属于相同的scope,以此为依据将`Variable`划分到不同的`paddle.layer`
1. `conv2d``batchnorm``fc`的scope需分别包含`conv``bn``fc`,以此获取对应`paddle.layer`的类型。也可以通过为`TFModelConverter`传入`layer_type_map``dict`,将scope映射到对应的`paddle.layer`的type来规避此项约束。
1. `conv2d``fc``Variable`的顺序为:先可学习`Weight``Bias``batchnorm``Variable`的顺序为:`scale``shift``mean``var`,请注意参数存储的顺序将`Variable`对应到`paddle.layer.batch_norm`相应位置的参数。
1. TensorFlow网络拓扑顺序需和PaddlePaddle网络拓扑顺序一致,尤其注意具有分支时分支的先后顺序,如ResNet的bottleneck模块中两分支定义的先后顺序。这是针对模型转换和PaddlePaddle网络配置均使用PaddlePaddle默认参数命名的情况,此时将根据拓扑顺序进行参数命名。
1. TensorFlow网络拓扑顺序需和PaddlePaddle网络拓扑顺序一致,尤其注意网络包含分支结构时分支定义的先后顺序,如ResNet的bottleneck模块中两分支定义的先后顺序。这是针对模型转换和PaddlePaddle网络配置均使用PaddlePaddle默认参数命名的情况,此时将根据拓扑顺序进行参数命名。
1. 若PaddlePaddle网络配置中需要通过调用`param_attr=paddle.attr.Param(name="XX"))`显示地设置可学习参数名字,这时可通过为`TFModelConverter`传入`layer_name_map``param_name_map`字典(类型为Python `dict`),在模型转换时将`Variable`的名字映射为所对应的`paddle.layer.XX`中可学习参数的名字。
1. 要求提供`build_model`接口以从此构建TensorFlow网络,加载模型并返回session。可参照如下示例进行编写:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册