Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
d9cb9684
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d9cb9684
编写于
2月 04, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refactor model config script
上级
c9e35e62
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
242 addition
and
0 deletion
+242
-0
fluid/DeepASR/model.py
fluid/DeepASR/model.py
+65
-0
fluid/DeepASR/train.py
fluid/DeepASR/train.py
+156
-0
fluid/DeepASR/utils.py
fluid/DeepASR/utils.py
+21
-0
未找到文件。
fluid/DeepASR/model.py
0 → 100644
浏览文件 @
d9cb9684
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
def
stacked_lstmp_model
(
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
=
1749
,
is_train
=
True
):
feature
=
fluid
.
layers
.
data
(
name
=
"feature"
,
shape
=
[
-
1
,
120
*
11
],
dtype
=
"float32"
,
lod_level
=
1
)
seq_conv1
=
fluid
.
layers
.
sequence_conv
(
input
=
feature
,
num_filters
=
1024
,
filter_size
=
3
,
filter_stride
=
1
,
bias_attr
=
True
)
bn1
=
fluid
.
layers
.
batch_norm
(
input
=
seq_conv1
,
act
=
"sigmoid"
,
is_test
=
not
is_train
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn1
for
i
in
range
(
stacked_num
):
fc
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
hidden_dim
*
4
,
bias_attr
=
True
)
proj
,
cell
=
fluid
.
layers
.
dynamic_lstmp
(
input
=
fc
,
size
=
hidden_dim
*
4
,
proj_size
=
proj_dim
,
bias_attr
=
True
,
use_peepholes
=
True
,
is_reverse
=
False
,
cell_activation
=
"tanh"
,
proj_activation
=
"tanh"
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
proj
,
act
=
"sigmoid"
,
is_test
=
not
is_train
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn
prediction
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
class_num
,
act
=
'softmax'
)
if
not
is_train
:
return
feature
,
prediction
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
prediction
,
label
,
avg_cost
fluid/DeepASR/
stacked_dynamic_lstm
.py
→
fluid/DeepASR/
train
.py
浏览文件 @
d9cb9684
...
...
@@ -2,6 +2,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
numpy
as
np
import
argparse
import
time
...
...
@@ -13,6 +14,8 @@ import data_utils.trans_mean_variance_norm as trans_mean_variance_norm
import
data_utils.trans_add_delta
as
trans_add_delta
import
data_utils.trans_splice
as
trans_splice
import
data_utils.data_reader
as
reader
from
model
import
stacked_lstmp_model
from
utils
import
print_arguments
,
lodtensor_to_ndarray
def
parse_args
():
...
...
@@ -42,6 +45,11 @@ def parse_args():
type
=
int
,
default
=
100
,
help
=
'Epoch number to train. (default: %(default)d)'
)
parser
.
add_argument
(
'--print_per_batches'
,
type
=
int
,
default
=
100
,
help
=
'Interval to print training accuracy. (default: %(default)d)'
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
...
...
@@ -54,94 +62,28 @@ def parse_args():
choices
=
[
'CPU'
,
'GPU'
],
help
=
'The device type. (default: %(default)s)'
)
parser
.
add_argument
(
'--infer_only'
,
action
=
'store_true'
,
help
=
'If set, run forward only.'
)
'--mean_var'
,
type
=
str
,
default
=
'data/global_mean_var_search26kHr'
,
help
=
'mean var path'
)
parser
.
add_argument
(
'--use_cprof'
,
action
=
'store_true'
,
help
=
'If set, use cProfile.'
)
'--feature_lst'
,
type
=
str
,
default
=
'data/feature.lst'
,
help
=
'feature list path.'
)
parser
.
add_argument
(
'--use_nvprof'
,
action
=
'store_true'
,
help
=
'If set, use nvprof for CUDA.'
)
parser
.
add_argument
(
'--mean_var'
,
type
=
str
,
help
=
'mean var path'
)
parser
.
add_argument
(
'--feature_lst'
,
type
=
str
,
help
=
'mean var path'
)
parser
.
add_argument
(
'--label_lst'
,
type
=
str
,
help
=
'mean var path'
)
'--label_lst'
,
type
=
str
,
default
=
'data/label.lst'
,
help
=
'label list path.'
)
args
=
parser
.
parse_args
()
return
args
def
print_arguments
(
args
):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
def
dynamic_lstmp_model
(
hidden_dim
,
proj_dim
,
stacked_num
,
class_num
=
1749
,
is_train
=
True
):
feature
=
fluid
.
layers
.
data
(
name
=
"feature"
,
shape
=
[
-
1
,
120
*
11
],
dtype
=
"float32"
,
lod_level
=
1
)
seq_conv1
=
fluid
.
layers
.
sequence_conv
(
input
=
feature
,
num_filters
=
1024
,
filter_size
=
3
,
filter_stride
=
1
,
bias_attr
=
True
)
bn1
=
fluid
.
layers
.
batch_norm
(
input
=
seq_conv1
,
act
=
"sigmoid"
,
is_test
=
False
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn1
for
i
in
range
(
stacked_num
):
fc
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
hidden_dim
*
4
,
bias_attr
=
True
)
proj
,
cell
=
fluid
.
layers
.
dynamic_lstmp
(
input
=
fc
,
size
=
hidden_dim
*
4
,
proj_size
=
proj_dim
,
bias_attr
=
True
,
use_peepholes
=
True
,
is_reverse
=
False
,
cell_activation
=
"tanh"
,
proj_activation
=
"tanh"
)
bn
=
fluid
.
layers
.
batch_norm
(
input
=
proj
,
act
=
"sigmoid"
,
is_test
=
False
,
momentum
=
0.9
,
epsilon
=
1e-05
,
data_layout
=
'NCHW'
)
stack_input
=
bn
prediction
=
fluid
.
layers
.
fc
(
input
=
stack_input
,
size
=
class_num
,
act
=
'softmax'
)
if
not
is_train
:
return
feature
,
prediction
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
prediction
,
label
,
avg_cost
def
train
(
args
):
if
args
.
use_cprof
:
pr
=
cProfile
.
Profile
()
pr
.
enable
()
"""train in loop."""
prediction
,
label
,
avg_cost
=
dynamic
_lstmp_model
(
prediction
,
label
,
avg_cost
=
stacked
_lstmp_model
(
args
.
hidden_dim
,
args
.
proj_dim
,
args
.
stacked_num
)
adam_optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
)
...
...
@@ -173,7 +115,6 @@ def train(args):
res_label
=
fluid
.
LoDTensor
()
for
pass_id
in
xrange
(
args
.
pass_num
):
pass_start_time
=
time
.
time
()
words_seen
=
0
accuracy
.
reset
(
exe
)
batch_id
=
0
while
True
:
...
...
@@ -188,40 +129,28 @@ def train(args):
res_label
.
set_lod
([
lod
])
batch_id
+=
1
words_seen
+=
lod
[
-
1
]
loss
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"feature"
:
res_feature
,
"label"
:
res_label
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
,
return_numpy
=
False
)
train_acc
=
accuracy
.
eval
(
exe
)
print
(
"acc:"
,
lodtensor_to_ndarray
(
loss
))
_
,
acc
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"feature"
:
res_feature
,
"label"
:
res_label
},
fetch_list
=
[
avg_cost
]
+
accuracy
.
metrics
,
return_numpy
=
False
)
if
batch_id
>
0
and
(
batch_id
%
args
.
print_per_batches
==
0
):
print
(
"
\n
Batch %d, training acc: %f"
%
(
batch_id
,
lodtensor_to_ndarray
(
acc
)[
0
]))
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
pass_end_time
=
time
.
time
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
words_seen
/
time_consumed
def
lodtensor_to_ndarray
(
lod_tensor
):
dims
=
lod_tensor
.
get_dims
()
ret
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
ret
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ret
,
lod_tensor
.
lod
()
# need to add test logic (kuke)
print
(
"
\n
Pass %d, time: %fs, test accuracy: 0.0f
\n
"
%
(
pass_id
,
time_consumed
))
if
__name__
==
'__main__'
:
args
=
parse_args
()
print_arguments
(
args
)
if
args
.
infer_only
:
pass
else
:
if
args
.
use_nvprof
and
args
.
device
==
'GPU'
:
with
profiler
.
cuda_profiler
(
"cuda_profiler.txt"
,
'csv'
)
as
nvprof
:
train
(
args
)
else
:
train
(
args
)
train
(
args
)
fluid/DeepASR/utils.py
0 → 100644
浏览文件 @
d9cb9684
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
argparse
def
print_arguments
(
args
):
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
def
lodtensor_to_ndarray
(
lod_tensor
):
dims
=
lod_tensor
.
get_dims
()
ret
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
ret
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ret
,
lod_tensor
.
lod
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录