提交 cf126730 编写于 作者: D dengkaipeng

remove update in models

上级 56d0dca1
...@@ -13,7 +13,7 @@ Paddle视频模型库第一期主要包含如下模型。 ...@@ -13,7 +13,7 @@ Paddle视频模型库第一期主要包含如下模型。
| 模型 | 类别 | 描述 | | 模型 | 类别 | 描述 |
| :---------------: | :--------: | :------------: | | :---------------: | :--------: | :------------: |
| [Attention Cluster](./models/attention_cluster/README.md) | 视频分类| CVPR'18提出的视频多模态特征注意力聚簇融合方法 | | [Attention Cluster](./models/attention_cluster/README.md) [[论文](https://arxiv.org/abs/1711.09550)] | 视频分类| CVPR'18提出的视频多模态特征注意力聚簇融合方法 |
| [Attention LSTM](./models/attention_lstm/README.md) | 视频分类| 常用模型,速度快精度高 | | [Attention LSTM](./models/attention_lstm/README.md) | 视频分类| 常用模型,速度快精度高 |
| [NeXtVLAD](./models/nextvlad/README.md) | 视频分类| 2nd-Youtube-8M最优单模型 | | [NeXtVLAD](./models/nextvlad/README.md) | 视频分类| 2nd-Youtube-8M最优单模型 |
| [StNet](./models/stnet/README.md) | 视频分类| AAAI'19提出的视频联合时空建模方法 | | [StNet](./models/stnet/README.md) | 视频分类| AAAI'19提出的视频联合时空建模方法 |
......
...@@ -102,8 +102,3 @@ Attention Cluster模型使用2nd-Youtube-8M数据集, 数据下载及准备请 ...@@ -102,8 +102,3 @@ Attention Cluster模型使用2nd-Youtube-8M数据集, 数据下载及准备请
- [Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification](https://arxiv.org/abs/1711.09550), Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, Shilei Wen - [Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification](https://arxiv.org/abs/1711.09550), Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, Shilei Wen
## 版本更新
- 3/2019: 新增模型
...@@ -95,7 +95,3 @@ AttentionLSTM模型使用2nd-Youtube-8M数据集,关于数据本分请参考[ ...@@ -95,7 +95,3 @@ AttentionLSTM模型使用2nd-Youtube-8M数据集,关于数据本分请参考[
- [Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification](https://arxiv.org/abs/1711.09550), Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, Shilei Wen - [Attention Clusters: Purely Attention Based Local Feature Integration for Video Classification](https://arxiv.org/abs/1711.09550), Xiang Long, Chuang Gan, Gerard de Melo, Jiajun Wu, Xiao Liu, Shilei Wen
## 版本更新
- 3/2019: 新增模型
...@@ -87,7 +87,3 @@ NeXtVLAD模型使用2nd-Youtube-8M数据集, 数据下载及准备请参考[数 ...@@ -87,7 +87,3 @@ NeXtVLAD模型使用2nd-Youtube-8M数据集, 数据下载及准备请参考[数
- [NeXtVLAD: An Efficient Neural Network to Aggregate Frame-level Features for Large-scale Video Classification](https://arxiv.org/abs/1811.05014), Rongcheng Lin, Jing Xiao, Jianping Fan - [NeXtVLAD: An Efficient Neural Network to Aggregate Frame-level Features for Large-scale Video Classification](https://arxiv.org/abs/1811.05014), Rongcheng Lin, Jing Xiao, Jianping Fan
## 版本更新
- 3/2019: 新增模型
...@@ -106,7 +106,3 @@ StNet的训练数据采用由DeepMind公布的Kinetics-400动作识别数据集 ...@@ -106,7 +106,3 @@ StNet的训练数据采用由DeepMind公布的Kinetics-400动作识别数据集
[StNet:Local and Global Spatial-Temporal Modeling for Human Action Recognition](https://arxiv.org/abs/1811.01549), Dongliang He, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu, Yandong Li, Limin Wang, Shilei Wen [StNet:Local and Global Spatial-Temporal Modeling for Human Action Recognition](https://arxiv.org/abs/1811.01549), Dongliang He, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu, Yandong Li, Limin Wang, Shilei Wen
## 版本更新
- 3/2019: 新增模型
...@@ -82,7 +82,3 @@ TSN的训练数据采用由DeepMind公布的Kinetics-400动作识别数据集。 ...@@ -82,7 +82,3 @@ TSN的训练数据采用由DeepMind公布的Kinetics-400动作识别数据集。
- [StNet:Local and Global Spatial-Temporal Modeling for Human Action Recognition](https://arxiv.org/abs/1608.00859), Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool - [StNet:Local and Global Spatial-Temporal Modeling for Human Action Recognition](https://arxiv.org/abs/1608.00859), Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, Luc Van Gool
## 版本更新
- 3/2019: 新增模型
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册