Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
ccabbdc2
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ccabbdc2
编写于
2月 26, 2018
作者:
wgzqz
提交者:
GitHub
2月 26, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #652 from guangzhuwu/develop
Make gradient attack method support norm (L1/L2/L∞, etc.).
上级
e0436538
0a83aa46
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
389 addition
and
214 deletion
+389
-214
fluid/adversarial/advbox/__init__.py
fluid/adversarial/advbox/__init__.py
+0
-4
fluid/adversarial/advbox/adversary.py
fluid/adversarial/advbox/adversary.py
+28
-60
fluid/adversarial/advbox/attacks/__init__.py
fluid/adversarial/advbox/attacks/__init__.py
+1
-8
fluid/adversarial/advbox/attacks/base.py
fluid/adversarial/advbox/attacks/base.py
+9
-7
fluid/adversarial/advbox/attacks/deepfool.py
fluid/adversarial/advbox/attacks/deepfool.py
+9
-4
fluid/adversarial/advbox/attacks/gradient_method.py
fluid/adversarial/advbox/attacks/gradient_method.py
+170
-0
fluid/adversarial/advbox/attacks/gradientsign.py
fluid/adversarial/advbox/attacks/gradientsign.py
+0
-60
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
+0
-59
fluid/adversarial/advbox/attacks/lbfgs.py
fluid/adversarial/advbox/attacks/lbfgs.py
+138
-0
fluid/adversarial/advbox/models/__init__.py
fluid/adversarial/advbox/models/__init__.py
+2
-4
fluid/adversarial/advbox/models/base.py
fluid/adversarial/advbox/models/base.py
+22
-5
fluid/adversarial/advbox/models/paddle.py
fluid/adversarial/advbox/models/paddle.py
+7
-0
fluid/adversarial/mnist_tutorial_fgsm.py
fluid/adversarial/mnist_tutorial_fgsm.py
+3
-3
未找到文件。
fluid/adversarial/advbox/__init__.py
浏览文件 @
ccabbdc2
"""
A set of tools for generating adversarial example on paddle platform
"""
from
.
import
attacks
from
.
import
models
from
.adversary
import
Adversary
fluid/adversarial/advbox/adversary.py
浏览文件 @
ccabbdc2
...
...
@@ -18,13 +18,15 @@ class Adversary(object):
"""
assert
original
is
not
None
self
.
original_label
=
original_label
self
.
target_label
=
None
self
.
adversarial_label
=
None
self
.
__original
=
original
self
.
__original_label
=
original_label
self
.
__target_label
=
None
self
.
__target
=
None
self
.
__is_targeted_attack
=
False
self
.
__adversarial_example
=
None
self
.
__
adversarial_label
=
None
self
.
__
bad_adversarial_example
=
None
def
set_target
(
self
,
is_targeted_attack
,
target
=
None
,
target_label
=
None
):
"""
...
...
@@ -38,10 +40,10 @@ class Adversary(object):
"""
assert
(
target_label
is
None
)
or
is_targeted_attack
self
.
__is_targeted_attack
=
is_targeted_attack
self
.
__
target_label
=
target_label
self
.
target_label
=
target_label
self
.
__target
=
target
if
not
is_targeted_attack
:
self
.
__
target_label
=
None
self
.
target_label
=
None
self
.
__target
=
None
def
set_original
(
self
,
original
,
original_label
=
None
):
...
...
@@ -53,10 +55,11 @@ class Adversary(object):
"""
if
original
!=
self
.
__original
:
self
.
__original
=
original
self
.
__
original_label
=
original_label
self
.
original_label
=
original_label
self
.
__adversarial_example
=
None
self
.
__bad_adversarial_example
=
None
if
original
is
None
:
self
.
__
original_label
=
None
self
.
original_label
=
None
def
_is_successful
(
self
,
adversarial_label
):
"""
...
...
@@ -65,11 +68,11 @@ class Adversary(object):
:param adversarial_label: adversarial label.
:return: bool
"""
if
self
.
__
target_label
is
not
None
:
return
adversarial_label
==
self
.
__
target_label
if
self
.
target_label
is
not
None
:
return
adversarial_label
==
self
.
target_label
else
:
return
(
adversarial_label
is
not
None
)
and
\
(
adversarial_label
!=
self
.
__
original_label
)
(
adversarial_label
!=
self
.
original_label
)
def
is_successful
(
self
):
"""
...
...
@@ -77,7 +80,7 @@ class Adversary(object):
:return: bool
"""
return
self
.
_is_successful
(
self
.
__
adversarial_label
)
return
self
.
_is_successful
(
self
.
adversarial_label
)
def
try_accept_the_example
(
self
,
adversarial_example
,
adversarial_label
):
"""
...
...
@@ -93,7 +96,9 @@ class Adversary(object):
ok
=
self
.
_is_successful
(
adversarial_label
)
if
ok
:
self
.
__adversarial_example
=
adversarial_example
self
.
__adversarial_label
=
adversarial_label
self
.
adversarial_label
=
adversarial_label
else
:
self
.
__bad_adversarial_example
=
adversarial_example
return
ok
def
perturbation
(
self
,
multiplying_factor
=
1.0
):
...
...
@@ -104,9 +109,14 @@ class Adversary(object):
:return: The perturbation that is multiplied by multiplying_factor.
"""
assert
self
.
__original
is
not
None
assert
self
.
__adversarial_example
is
not
None
return
multiplying_factor
*
(
self
.
__adversarial_example
-
self
.
__original
)
assert
(
self
.
__adversarial_example
is
not
None
)
or
\
(
self
.
__bad_adversarial_example
is
not
None
)
if
self
.
__adversarial_example
is
not
None
:
return
multiplying_factor
*
(
self
.
__adversarial_example
-
self
.
__original
)
else
:
return
multiplying_factor
*
(
self
.
__bad_adversarial_example
-
self
.
__original
)
@
property
def
is_targeted_attack
(
self
):
...
...
@@ -115,20 +125,6 @@ class Adversary(object):
"""
return
self
.
__is_targeted_attack
@
property
def
target_label
(
self
):
"""
:property: target_label
"""
return
self
.
__target_label
@
target_label
.
setter
def
target_label
(
self
,
label
):
"""
:property: target_label
"""
self
.
__target_label
=
label
@
property
def
target
(
self
):
"""
...
...
@@ -143,20 +139,6 @@ class Adversary(object):
"""
return
self
.
__original
@
property
def
original_label
(
self
):
"""
:property: original
"""
return
self
.
__original_label
@
original_label
.
setter
def
original_label
(
self
,
label
):
"""
original_label setter
"""
self
.
__original_label
=
label
@
property
def
adversarial_example
(
self
):
"""
...
...
@@ -164,23 +146,9 @@ class Adversary(object):
"""
return
self
.
__adversarial_example
@
adversarial_example
.
setter
def
adversarial_example
(
self
,
example
):
"""
adversarial_example setter
"""
self
.
__adversarial_example
=
example
@
property
def
adversarial_label
(
self
):
"""
:property: adversarial_label
"""
return
self
.
__adversarial_label
@
adversarial_label
.
setter
def
adversarial_label
(
self
,
label
):
def
bad_adversarial_example
(
self
):
"""
adversarial_label setter
:property: bad_adversarial_example
"""
self
.
__adversarial_label
=
label
return
self
.
__bad_adversarial_example
fluid/adversarial/advbox/attacks/__init__.py
浏览文件 @
ccabbdc2
"""
Attack methods
Attack methods
__init__.py
"""
from
.base
import
Attack
from
.deepfool
import
DeepFoolAttack
from
.gradientsign
import
FGSM
from
.gradientsign
import
GradientSignAttack
from
.iterator_gradientsign
import
IFGSM
from
.iterator_gradientsign
import
IteratorGradientSignAttack
fluid/adversarial/advbox/attacks/base.py
浏览文件 @
ccabbdc2
...
...
@@ -52,21 +52,23 @@ class Attack(object):
:param adversary: adversary
:return: None
"""
assert
self
.
model
.
channel_axis
()
==
adversary
.
original
.
ndim
if
adversary
.
original_label
is
None
:
adversary
.
original_label
=
np
.
argmax
(
self
.
model
.
predict
(
adversary
.
original
))
if
adversary
.
is_targeted_attack
and
adversary
.
target_label
is
None
:
if
adversary
.
target
is
None
:
raise
ValueError
(
'When adversary.is_targeted_attack is
T
rue, '
'When adversary.is_targeted_attack is
t
rue, '
'adversary.target_label or adversary.target must be set.'
)
else
:
adversary
.
target_label_label
=
np
.
argmax
(
self
.
model
.
predict
(
self
.
model
.
scale_input
(
adversary
.
target
)))
adversary
.
target_label
=
np
.
argmax
(
self
.
model
.
predict
(
adversary
.
target
))
logging
.
info
(
'adversary:
\n
original_label: {}'
'
\n
target_lable: {}'
'
\n
is_targeted_attack: {}'
logging
.
info
(
'adversary:'
'
\n
original_label: {}'
'
\n
target_label: {}'
'
\n
is_targeted_attack: {}'
''
.
format
(
adversary
.
original_label
,
adversary
.
target_label
,
adversary
.
is_targeted_attack
))
fluid/adversarial/advbox/attacks/deepfool.py
浏览文件 @
ccabbdc2
...
...
@@ -10,6 +10,8 @@ import numpy as np
from
.base
import
Attack
__all__
=
[
'DeepFoolAttack'
]
class
DeepFoolAttack
(
Attack
):
"""
...
...
@@ -56,7 +58,7 @@ class DeepFoolAttack(Attack):
gradient_k
=
self
.
model
.
gradient
(
x
,
k
)
w_k
=
gradient_k
-
gradient
f_k
=
f
[
k
]
-
f
[
pre_label
]
w_k_norm
=
np
.
linalg
.
norm
(
w_k
)
+
1e-8
w_k_norm
=
np
.
linalg
.
norm
(
w_k
.
flatten
()
)
+
1e-8
pert_k
=
(
np
.
abs
(
f_k
)
+
1e-8
)
/
w_k_norm
if
pert_k
<
pert
:
pert
=
pert_k
...
...
@@ -70,9 +72,12 @@ class DeepFoolAttack(Attack):
f
=
self
.
model
.
predict
(
x
)
gradient
=
self
.
model
.
gradient
(
x
,
pre_label
)
adv_label
=
np
.
argmax
(
f
)
logging
.
info
(
'iteration = {}, f = {}, pre_label = {}'
', adv_label={}'
.
format
(
iteration
,
f
[
pre_label
],
pre_label
,
adv_label
))
logging
.
info
(
'iteration={}, f[pre_label]={}, f[target_label]={}'
', f[adv_label]={}, pre_label={}, adv_label={}'
''
.
format
(
iteration
,
f
[
pre_label
],
(
f
[
adversary
.
target_label
]
if
adversary
.
is_targeted_attack
else
'NaN'
),
f
[
adv_label
],
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
x
,
adv_label
):
return
adversary
...
...
fluid/adversarial/advbox/attacks/gradient_method.py
0 → 100644
浏览文件 @
ccabbdc2
"""
This module provide the attack method for Iterator FGSM's implement.
"""
from
__future__
import
division
import
logging
from
collections
import
Iterable
import
numpy
as
np
from
.base
import
Attack
__all__
=
[
'GradientMethodAttack'
,
'FastGradientSignMethodAttack'
,
'FGSM'
,
'FastGradientSignMethodTargetedAttack'
,
'FGSMT'
,
'BasicIterativeMethodAttack'
,
'BIM'
,
'IterativeLeastLikelyClassMethodAttack'
,
'ILCM'
]
class
GradientMethodAttack
(
Attack
):
"""
This class implements gradient attack method, and is the base of FGSM, BIM,
ILCM, etc.
"""
def
__init__
(
self
,
model
,
support_targeted
=
True
):
"""
:param model(model): The model to be attacked.
:param support_targeted(bool): Does this attack method support targeted.
"""
super
(
GradientMethodAttack
,
self
).
__init__
(
model
)
self
.
support_targeted
=
support_targeted
def
_apply
(
self
,
adversary
,
norm_ord
=
np
.
inf
,
epsilons
=
0.01
,
steps
=
100
):
"""
Apply the gradient attack method.
:param adversary(Adversary):
The Adversary object.
:param norm_ord(int):
Order of the norm, such as np.inf, 1, 2, etc. It can't be 0.
:param epsilons(list|tuple|int):
Attack step size (input variation).
:param steps:
The number of iterator steps.
:return:
adversary(Adversary): The Adversary object.
"""
if
norm_ord
==
0
:
raise
ValueError
(
"L0 norm is not supported!"
)
if
not
self
.
support_targeted
:
if
adversary
.
is_targeted_attack
:
raise
ValueError
(
"This attack method doesn't support targeted attack!"
)
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
epsilons
,
epsilons
+
1e-10
,
num
=
steps
)
pre_label
=
adversary
.
original_label
min_
,
max_
=
self
.
model
.
bounds
()
assert
self
.
model
.
channel_axis
()
==
adversary
.
original
.
ndim
assert
(
self
.
model
.
channel_axis
()
==
1
or
self
.
model
.
channel_axis
()
==
adversary
.
original
.
shape
[
0
]
or
self
.
model
.
channel_axis
()
==
adversary
.
original
.
shape
[
-
1
])
step
=
1
adv_img
=
adversary
.
original
for
epsilon
in
epsilons
[:
steps
]:
if
epsilon
==
0.0
:
continue
if
adversary
.
is_targeted_attack
:
gradient
=
-
self
.
model
.
gradient
(
adv_img
,
adversary
.
target_label
)
else
:
gradient
=
self
.
model
.
gradient
(
adv_img
,
adversary
.
original_label
)
if
norm_ord
==
np
.
inf
:
gradient_norm
=
np
.
sign
(
gradient
)
else
:
gradient_norm
=
gradient
/
self
.
_norm
(
gradient
,
ord
=
norm_ord
)
adv_img
=
adv_img
+
epsilon
*
gradient_norm
*
(
max_
-
min_
)
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
adv_img
))
logging
.
info
(
'step={}, epsilon = {:.5f}, pre_label = {}, '
'adv_label={}'
.
format
(
step
,
epsilon
,
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
adv_img
,
adv_label
):
return
adversary
step
+=
1
return
adversary
@
staticmethod
def
_norm
(
a
,
ord
):
if
a
.
ndim
==
1
:
return
np
.
linalg
.
norm
(
a
,
ord
=
ord
)
if
a
.
ndim
==
a
.
shape
[
0
]:
norm_shape
=
(
a
.
ndim
,
reduce
(
np
.
dot
,
a
.
shape
[
1
:]))
norm_axis
=
1
else
:
norm_shape
=
(
reduce
(
np
.
dot
,
a
.
shape
[:
-
1
]),
a
.
ndim
)
norm_axis
=
0
return
np
.
linalg
.
norm
(
a
.
reshape
(
norm_shape
),
ord
=
ord
,
axis
=
norm_axis
)
class
FastGradientSignMethodTargetedAttack
(
GradientMethodAttack
):
"""
"Fast Gradient Sign Method" is extended to support targeted attack.
"Fast Gradient Sign Method" was originally implemented by Goodfellow et
al. (2015) with the infinity norm.
Paper link: https://arxiv.org/abs/1412.6572
"""
def
_apply
(
self
,
adversary
,
epsilons
=
0.03
):
return
GradientMethodAttack
.
_apply
(
self
,
adversary
=
adversary
,
norm_ord
=
np
.
inf
,
epsilons
=
epsilons
,
steps
=
1
)
class
FastGradientSignMethodAttack
(
FastGradientSignMethodTargetedAttack
):
"""
This attack was originally implemented by Goodfellow et al. (2015) with the
infinity norm, and is known as the "Fast Gradient Sign Method".
Paper link: https://arxiv.org/abs/1412.6572
"""
def
__init__
(
self
,
model
):
super
(
FastGradientSignMethodAttack
,
self
).
__init__
(
model
,
False
)
class
IterativeLeastLikelyClassMethodAttack
(
GradientMethodAttack
):
"""
"Iterative Least-likely Class Method (ILCM)" extends "BIM" to support
targeted attack.
"The Basic Iterative Method (BIM)" is to extend "FSGM". "BIM" iteratively
take multiple small steps while adjusting the direction after each step.
Paper link: https://arxiv.org/abs/1607.02533
"""
def
_apply
(
self
,
adversary
,
epsilons
=
0.001
,
steps
=
1000
):
return
GradientMethodAttack
.
_apply
(
self
,
adversary
=
adversary
,
norm_ord
=
np
.
inf
,
epsilons
=
epsilons
,
steps
=
steps
)
class
BasicIterativeMethodAttack
(
IterativeLeastLikelyClassMethodAttack
):
"""
FGSM is a one-step method. "The Basic Iterative Method (BIM)" iteratively
take multiple small steps while adjusting the direction after each step.
Paper link: https://arxiv.org/abs/1607.02533
"""
def
__init__
(
self
,
model
):
super
(
BasicIterativeMethodAttack
,
self
).
__init__
(
model
,
False
)
FGSM
=
FastGradientSignMethodAttack
FGSMT
=
FastGradientSignMethodTargetedAttack
BIM
=
BasicIterativeMethodAttack
ILCM
=
IterativeLeastLikelyClassMethodAttack
fluid/adversarial/advbox/attacks/gradientsign.py
已删除
100644 → 0
浏览文件 @
e0436538
"""
This module provide the attack method for FGSM's implement.
"""
from
__future__
import
division
import
logging
from
collections
import
Iterable
import
numpy
as
np
from
.base
import
Attack
class
GradientSignAttack
(
Attack
):
"""
This attack was originally implemented by Goodfellow et al. (2015) with the
infinity norm (and is known as the "Fast Gradient Sign Method").
This is therefore called the Fast Gradient Method.
Paper link: https://arxiv.org/abs/1412.6572
"""
def
_apply
(
self
,
adversary
,
epsilons
=
1000
):
"""
Apply the gradient sign attack.
Args:
adversary(Adversary): The Adversary object.
epsilons(list|tuple|int): The epsilon (input variation parameter).
Return:
adversary: The Adversary object.
"""
assert
adversary
is
not
None
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
0
,
1
,
num
=
epsilons
+
1
)[
1
:]
pre_label
=
adversary
.
original_label
min_
,
max_
=
self
.
model
.
bounds
()
if
adversary
.
is_targeted_attack
:
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
target_label
)
gradient_sign
=
-
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
else
:
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
original_label
)
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
for
epsilon
in
epsilons
:
adv_img
=
adversary
.
original
+
epsilon
*
gradient_sign
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
adv_img
))
logging
.
info
(
'epsilon = {:.3f}, pre_label = {}, adv_label={}'
.
format
(
epsilon
,
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
adv_img
,
adv_label
):
return
adversary
return
adversary
FGSM
=
GradientSignAttack
fluid/adversarial/advbox/attacks/iterator_gradientsign.py
已删除
100644 → 0
浏览文件 @
e0436538
"""
This module provide the attack method for Iterator FGSM's implement.
"""
from
__future__
import
division
import
logging
from
collections
import
Iterable
import
numpy
as
np
from
.base
import
Attack
class
IteratorGradientSignAttack
(
Attack
):
"""
This attack was originally implemented by Alexey Kurakin(Google Brain).
Paper link: https://arxiv.org/pdf/1607.02533.pdf
"""
def
_apply
(
self
,
adversary
,
epsilons
=
100
,
steps
=
10
):
"""
Apply the iterative gradient sign attack.
Args:
adversary(Adversary): The Adversary object.
epsilons(list|tuple|int): The epsilon (input variation parameter).
steps(int): The number of iterator steps.
Return:
adversary(Adversary): The Adversary object.
"""
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
0
,
1
/
steps
,
num
=
epsilons
+
1
)[
1
:]
pre_label
=
adversary
.
original_label
min_
,
max_
=
self
.
model
.
bounds
()
for
epsilon
in
epsilons
:
adv_img
=
adversary
.
original
for
_
in
range
(
steps
):
if
adversary
.
is_targeted_attack
:
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
target_label
)
gradient_sign
=
-
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
else
:
gradient
=
self
.
model
.
gradient
(
adversary
.
original
,
adversary
.
original_label
)
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
adv_img
=
adv_img
+
gradient_sign
*
epsilon
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
adv_img
))
logging
.
info
(
'epsilon = {:.3f}, pre_label = {}, adv_label={}'
.
format
(
epsilon
,
pre_label
,
adv_label
))
if
adversary
.
try_accept_the_example
(
adv_img
,
adv_label
):
return
adversary
return
adversary
IFGSM
=
IteratorGradientSignAttack
fluid/adversarial/advbox/attacks/lbfgs.py
0 → 100644
浏览文件 @
ccabbdc2
"""
This module provide the attack method of "LBFGS".
"""
from
__future__
import
division
import
logging
import
numpy
as
np
from
scipy.optimize
import
fmin_l_bfgs_b
from
.base
import
Attack
__all__
=
[
'LBFGSAttack'
,
'LBFGS'
]
class
LBFGSAttack
(
Attack
):
"""
Uses L-BFGS-B to minimize the cross-entropy and the distance between the
original and the adversary.
Paper link: https://arxiv.org/abs/1510.05328
"""
def
__init__
(
self
,
model
):
super
(
LBFGSAttack
,
self
).
__init__
(
model
)
self
.
_predicts_normalized
=
None
self
.
_adversary
=
None
# type: Adversary
def
_apply
(
self
,
adversary
,
epsilon
=
0.001
,
steps
=
10
):
self
.
_adversary
=
adversary
if
not
adversary
.
is_targeted_attack
:
raise
ValueError
(
"This attack method only support targeted attack!"
)
# finding initial c
logging
.
info
(
'finding initial c...'
)
c
=
epsilon
x0
=
adversary
.
original
.
flatten
()
for
i
in
range
(
30
):
c
=
2
*
c
logging
.
info
(
'c={}'
.
format
(
c
))
is_adversary
=
self
.
_lbfgsb
(
x0
,
c
,
steps
)
if
is_adversary
:
break
if
not
is_adversary
:
logging
.
info
(
'Failed!'
)
return
adversary
# binary search c
logging
.
info
(
'binary search c...'
)
c_low
=
0
c_high
=
c
while
c_high
-
c_low
>=
epsilon
:
logging
.
info
(
'c_high={}, c_low={}, diff={}, epsilon={}'
.
format
(
c_high
,
c_low
,
c_high
-
c_low
,
epsilon
))
c_half
=
(
c_low
+
c_high
)
/
2
is_adversary
=
self
.
_lbfgsb
(
x0
,
c_half
,
steps
)
if
is_adversary
:
c_high
=
c_half
else
:
c_low
=
c_half
return
adversary
def
_is_predicts_normalized
(
self
,
predicts
):
"""
To determine the predicts is normalized.
:param predicts(np.array): the output of the model.
:return: bool
"""
if
self
.
_predicts_normalized
is
None
:
if
self
.
model
.
predict_name
().
lower
()
in
[
'softmax'
,
'probabilities'
,
'probs'
]:
self
.
_predicts_normalized
=
True
else
:
if
np
.
any
(
predicts
<
0.0
):
self
.
_predicts_normalized
=
False
else
:
s
=
np
.
sum
(
predicts
.
flatten
())
if
0.999
<=
s
<=
1.001
:
self
.
_predicts_normalized
=
True
else
:
self
.
_predicts_normalized
=
False
assert
self
.
_predicts_normalized
is
not
None
return
self
.
_predicts_normalized
def
_loss
(
self
,
adv_x
,
c
):
"""
To get the loss and gradient.
:param adv_x: the candidate adversarial example
:param c: parameter 'C' in the paper
:return: (loss, gradient)
"""
x
=
adv_x
.
reshape
(
self
.
_adversary
.
original
.
shape
)
# cross_entropy
logits
=
self
.
model
.
predict
(
x
)
if
not
self
.
_is_predicts_normalized
(
logits
):
# to softmax
e
=
np
.
exp
(
logits
)
logits
=
e
/
np
.
sum
(
e
)
e
=
np
.
exp
(
logits
)
s
=
np
.
sum
(
e
)
ce
=
np
.
log
(
s
)
-
logits
[
self
.
_adversary
.
target_label
]
# L2 distance
min_
,
max_
=
self
.
model
.
bounds
()
d
=
np
.
sum
((
x
-
self
.
_adversary
.
original
).
flatten
()
**
2
)
\
/
((
max_
-
min_
)
**
2
)
/
len
(
adv_x
)
# gradient
gradient
=
self
.
model
.
gradient
(
x
,
self
.
_adversary
.
target_label
)
result
=
(
c
*
ce
+
d
).
astype
(
float
),
gradient
.
flatten
().
astype
(
float
)
return
result
def
_lbfgsb
(
self
,
x0
,
c
,
maxiter
):
min_
,
max_
=
self
.
model
.
bounds
()
bounds
=
[(
min_
,
max_
)]
*
len
(
x0
)
approx_grad_eps
=
(
max_
-
min_
)
/
100.0
x
,
f
,
d
=
fmin_l_bfgs_b
(
self
.
_loss
,
x0
,
args
=
(
c
,
),
bounds
=
bounds
,
maxiter
=
maxiter
,
epsilon
=
approx_grad_eps
)
if
np
.
amax
(
x
)
>
max_
or
np
.
amin
(
x
)
<
min_
:
x
=
np
.
clip
(
x
,
min_
,
max_
)
shape
=
self
.
_adversary
.
original
.
shape
adv_label
=
np
.
argmax
(
self
.
model
.
predict
(
x
.
reshape
(
shape
)))
logging
.
info
(
'pre_label = {}, adv_label={}'
.
format
(
self
.
_adversary
.
target_label
,
adv_label
))
return
self
.
_adversary
.
try_accept_the_example
(
x
.
reshape
(
shape
),
adv_label
)
LBFGS
=
LBFGSAttack
fluid/adversarial/advbox/models/__init__.py
浏览文件 @
ccabbdc2
"""
Paddle model for target of attack
"""
from
.base
import
Model
from
.paddle
import
PaddleModel
Models __init__.py
"""
\ No newline at end of file
fluid/adversarial/advbox/models/base.py
浏览文件 @
ccabbdc2
...
...
@@ -24,11 +24,21 @@ class Model(object):
assert
len
(
bounds
)
==
2
assert
channel_axis
in
[
0
,
1
,
2
,
3
]
if
preprocess
is
None
:
preprocess
=
(
0
,
1
)
self
.
_bounds
=
bounds
self
.
_channel_axis
=
channel_axis
self
.
_preprocess
=
preprocess
# Make self._preprocess to be (0,1) if possible, so that don't need
# to do substract or divide.
if
preprocess
is
not
None
:
sub
,
div
=
np
.
array
(
preprocess
)
if
not
np
.
any
(
sub
):
sub
=
0
if
np
.
all
(
div
==
1
):
div
=
1
assert
(
div
is
None
)
or
np
.
all
(
div
)
self
.
_preprocess
=
(
sub
,
div
)
else
:
self
.
_preprocess
=
(
0
,
1
)
def
bounds
(
self
):
"""
...
...
@@ -47,8 +57,7 @@ class Model(object):
sub
,
div
=
self
.
_preprocess
if
np
.
any
(
sub
!=
0
):
res
=
input_
-
sub
assert
np
.
any
(
div
!=
0
)
if
np
.
any
(
div
!=
1
):
if
not
np
.
all
(
sub
==
1
):
if
res
is
None
:
# "res = input_ - sub" is not executed!
res
=
input_
/
div
else
:
...
...
@@ -97,3 +106,11 @@ class Model(object):
with the shape (height, width, channel).
"""
raise
NotImplementedError
@
abstractmethod
def
predict_name
(
self
):
"""
Get the predict name, such as "softmax",etc.
:return: string
"""
raise
NotImplementedError
fluid/adversarial/advbox/models/paddle.py
浏览文件 @
ccabbdc2
...
...
@@ -114,3 +114,10 @@ class PaddleModel(Model):
feed
=
feeder
.
feed
([(
scaled_data
,
label
)]),
fetch_list
=
[
self
.
_gradient
])
return
grad
.
reshape
(
data
.
shape
)
def
predict_name
(
self
):
"""
Get the predict name, such as "softmax",etc.
:return: string
"""
return
self
.
_program
.
block
(
0
).
var
(
self
.
_predict_name
).
op
.
type
fluid/adversarial/mnist_tutorial_fgsm.py
浏览文件 @
ccabbdc2
...
...
@@ -5,8 +5,8 @@ import matplotlib.pyplot as plt
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
from
advbox
import
Adversary
from
advbox.attacks.gradient
sign
import
GradientSignAttack
from
advbox
.adversary
import
Adversary
from
advbox.attacks.gradient
_method
import
FGSM
from
advbox.models.paddle
import
PaddleModel
...
...
@@ -73,7 +73,7 @@ def main():
# advbox demo
m
=
PaddleModel
(
fluid
.
default_main_program
(),
IMG_NAME
,
LABEL_NAME
,
logits
.
name
,
avg_cost
.
name
,
(
-
1
,
1
))
att
=
GradientSignAttack
(
m
)
att
=
FGSM
(
m
)
for
data
in
train_reader
():
# fgsm attack
adversary
=
att
(
Adversary
(
data
[
0
][
0
],
data
[
0
][
1
]))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录