Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
cc1e4c14
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cc1e4c14
编写于
2月 27, 2018
作者:
X
xymyeah
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Inception-V4 for Fluid #issue:647
上级
7bc7f4e1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
374 addition
and
0 deletion
+374
-0
fluid/image_classification/inception_v4.py
fluid/image_classification/inception_v4.py
+374
-0
未找到文件。
fluid/image_classification/inception_v4.py
0 → 100644
浏览文件 @
cc1e4c14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
numpy
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
math
__all__
=
[
'inception_v4'
]
def
img_conv
(
input
,
num_filters
,
filter_size
,
stride
,
padding
,
act
=
'relu'
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
act
=
None
)
norm
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
return
norm
def
stem
(
input
):
conv0
=
img_conv
(
input
=
input
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
conv1
=
img_conv
(
input
=
conv0
,
num_filters
=
32
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
conv2
=
img_conv
(
input
=
conv1
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
def
block0
(
input
):
pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
2
,
# add
pool_padding
=
1
,
pool_type
=
'max'
)
conv0
=
img_conv
(
input
=
input
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
return
fluid
.
layers
.
concat
(
input
=
[
pool0
,
conv0
],
axis
=
1
)
def
block1
(
input
):
l_conv0
=
img_conv
(
input
=
input
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
l_conv1
=
img_conv
(
input
=
l_conv0
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
r_conv0
=
img_conv
(
input
=
input
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
r_conv1
=
img_conv
(
input
=
r_conv0
,
num_filters
=
64
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
))
r_conv2
=
img_conv
(
input
=
r_conv1
,
num_filters
=
64
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
))
r_conv3
=
img_conv
(
input
=
r_conv2
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
return
fluid
.
layers
.
concat
(
input
=
[
l_conv1
,
r_conv3
],
axis
=
1
)
def
block2
(
input
):
conv0
=
img_conv
(
input
=
input
,
num_filters
=
192
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
2
,
# new add
pool_padding
=
1
,
pool_type
=
'max'
)
return
fluid
.
layers
.
concat
(
input
=
[
conv0
,
pool0
],
axis
=
1
)
conv3
=
block0
(
conv2
)
conv4
=
block1
(
conv3
)
conv5
=
block2
(
conv4
)
return
conv5
def
Inception_A
(
input
,
depth
):
b0_pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
1
,
pool_padding
=
1
,
pool_type
=
'avg'
)
b0_conv0
=
img_conv
(
input
=
b0_pool0
,
num_filters
=
96
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b1_conv0
=
img_conv
(
input
=
input
,
num_filters
=
96
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv0
=
img_conv
(
input
=
input
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv1
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
b3_conv0
=
img_conv
(
input
=
input
,
num_filters
=
64
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b3_conv1
=
img_conv
(
input
=
b3_conv0
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
b3_conv2
=
img_conv
(
input
=
b3_conv1
,
num_filters
=
96
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
return
fluid
.
layers
.
concat
(
input
=
[
b0_conv0
,
b1_conv0
,
b2_conv1
,
b3_conv2
],
axis
=
1
)
def
Inception_B
(
input
,
depth
):
b0_pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
1
,
pool_padding
=
1
,
pool_type
=
'avg'
)
b0_conv0
=
img_conv
(
input
=
b0_pool0
,
num_filters
=
128
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b1_conv0
=
img_conv
(
input
=
input
,
num_filters
=
384
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv0
=
img_conv
(
input
=
input
,
num_filters
=
192
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv1
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
224
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
))
b2_conv2
=
img_conv
(
input
=
b2_conv1
,
num_filters
=
256
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
))
b3_conv0
=
img_conv
(
input
=
input
,
num_filters
=
192
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b3_conv1
=
img_conv
(
input
=
b3_conv0
,
num_filters
=
192
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
))
b3_conv2
=
img_conv
(
input
=
b3_conv1
,
num_filters
=
224
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
))
b3_conv3
=
img_conv
(
input
=
b3_conv2
,
num_filters
=
224
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
))
b3_conv4
=
img_conv
(
input
=
b3_conv3
,
num_filters
=
256
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
))
return
fluid
.
layers
.
concat
(
input
=
[
b0_conv0
,
b1_conv0
,
b2_conv2
,
b3_conv4
],
axis
=
1
)
def
Inception_C
(
input
,
depth
):
b0_pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
1
,
pool_padding
=
1
,
pool_type
=
'avg'
)
b0_conv0
=
img_conv
(
input
=
b0_pool0
,
num_filters
=
256
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b1_conv0
=
img_conv
(
input
=
input
,
num_filters
=
256
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv0
=
img_conv
(
input
=
input
,
num_filters
=
384
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv1
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
256
,
filter_size
=
(
1
,
3
),
stride
=
1
,
padding
=
(
0
,
1
))
b2_conv2
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
256
,
filter_size
=
(
3
,
1
),
stride
=
1
,
padding
=
(
1
,
0
))
b3_conv0
=
img_conv
(
input
=
input
,
num_filters
=
384
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b3_conv1
=
img_conv
(
input
=
b3_conv0
,
num_filters
=
448
,
filter_size
=
(
1
,
3
),
stride
=
1
,
padding
=
(
0
,
1
))
b3_conv2
=
img_conv
(
input
=
b3_conv1
,
num_filters
=
512
,
filter_size
=
(
3
,
1
),
stride
=
1
,
padding
=
(
1
,
0
))
b3_conv3
=
img_conv
(
input
=
b3_conv2
,
num_filters
=
256
,
filter_size
=
(
3
,
1
),
stride
=
1
,
padding
=
(
1
,
0
))
b3_conv4
=
img_conv
(
input
=
b3_conv2
,
num_filters
=
256
,
filter_size
=
(
1
,
3
),
stride
=
1
,
padding
=
(
0
,
1
))
return
fluid
.
layers
.
concat
(
input
=
[
b0_conv0
,
b1_conv0
,
b2_conv1
,
b2_conv2
,
b3_conv3
,
b3_conv4
],
axis
=
1
)
def
Reduction_A
(
input
):
b0_pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
2
,
#new add
pool_padding
=
1
,
pool_type
=
'max'
)
b1_conv0
=
img_conv
(
input
=
input
,
num_filters
=
384
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
b2_conv0
=
img_conv
(
input
=
input
,
num_filters
=
192
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv1
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
224
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
)
b2_conv2
=
img_conv
(
input
=
b2_conv1
,
num_filters
=
256
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
return
fluid
.
layers
.
concat
(
input
=
[
b0_pool0
,
b1_conv0
,
b2_conv2
],
axis
=
1
)
def
Reduction_B
(
input
):
b0_pool0
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
3
,
pool_stride
=
2
,
#new add
pool_padding
=
1
,
pool_type
=
'max'
)
b1_conv0
=
img_conv
(
input
=
input
,
num_filters
=
192
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b1_conv1
=
img_conv
(
input
=
b1_conv0
,
num_filters
=
192
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
b2_conv0
=
img_conv
(
input
=
input
,
num_filters
=
256
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
)
b2_conv1
=
img_conv
(
input
=
b2_conv0
,
num_filters
=
256
,
filter_size
=
(
1
,
7
),
stride
=
1
,
padding
=
(
0
,
3
))
b2_conv2
=
img_conv
(
input
=
b2_conv1
,
num_filters
=
320
,
filter_size
=
(
7
,
1
),
stride
=
1
,
padding
=
(
3
,
0
))
b2_conv3
=
img_conv
(
input
=
b2_conv2
,
num_filters
=
320
,
filter_size
=
3
,
stride
=
2
,
padding
=
1
)
return
fluid
.
layers
.
concat
(
input
=
[
b0_pool0
,
b1_conv1
,
b2_conv3
],
axis
=
1
)
def
inception_v4
(
input
,
class_dim
):
conv
=
stem
(
input
)
for
i
in
range
(
4
):
conv
=
Inception_A
(
conv
,
i
)
conv
=
Reduction_A
(
conv
)
for
i
in
range
(
7
):
conv
=
Inception_B
(
conv
,
i
)
conv
=
Reduction_B
(
conv
)
for
i
in
range
(
3
):
conv
=
Inception_C
(
conv
,
i
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_stride
=
1
,
pool_type
=
'avg'
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
act
=
'softmax'
)
return
out
def
train
(
use_cuda
,
learning_rate
,
batch_size
,
num_passes
,
model_save_dir
=
'model'
):
class_dim
=
102
image_shape
=
[
3
,
224
,
224
]
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
net
=
inception_v4
(
image
,
class_dim
)
predict
=
fluid
.
layers
.
fc
(
input
=
net
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
optimizer
.
minimize
(
avg_cost
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
1000
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
valid
(),
batch_size
=
batch_size
)
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
inference_program
=
fluid
.
io
.
get_inference_program
([
avg_cost
,
acc
])
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
label
])
exe
.
run
(
fluid
.
default_startup_program
())
loss
=
0.0
for
pass_id
in
range
(
num_passes
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
exe
.
run
(
feed
=
feeder
.
feed
(
data
))
if
(
batch_id
%
10
)
==
0
:
acc_list
=
[]
avg_loss_list
=
[]
for
tid
,
test_data
in
enumerate
(
test_reader
()):
loss_t
,
acc_t
=
exe
.
run
(
program
=
inference_program
,
feed
=
feeder
.
feed
(
test_data
),
fetch_list
=
[
avg_cost
,
acc
])
if
math
.
isnan
(
float
(
loss_t
)):
sys
.
exit
(
"got NaN loss, training failed."
)
acc_list
.
append
(
float
(
acc_t
))
avg_loss_list
.
append
(
float
(
loss_t
))
break
# Use 1 segment for speeding up CI
acc_value
=
numpy
.
array
(
acc_list
).
mean
()
avg_loss_value
=
numpy
.
array
(
avg_loss_list
).
mean
()
print
(
'PassID {0:1}, BatchID {1:04}, Test Loss {2:2.2}, Acc {3:2.2}'
.
format
(
pass_id
,
batch_id
+
1
,
float
(
avg_loss_value
),
float
(
acc_value
)))
if
acc_value
>
0.01
:
# Low threshold for speeding up CI
fluid
.
io
.
save_inference_model
(
model_save_dir
,
[
"image"
],
[
predict
],
exe
)
return
if
__name__
==
'__main__'
:
train
(
use_cuda
=
False
,
learning_rate
=
0.001
,
batch_size
=
128
,
num_passes
=
1
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录