提交 cb7e720e 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #353 from will-am/add_featurize_in_GNR

Add preprocess and evaluation scripts for GNR.
......@@ -25,10 +25,13 @@ You can also visit https://github.com/baidu-research/GloballyNormalizedReader to
docker pull paddledev/paddle
```
2. Download all necessary data by running:
```bash
cd data && ./download.sh
```
3. **(TODO) add the preprocess and featurizer scripts.**
```bash
cd data && ./download.sh && cd ..
```
3. Preprocess and featurizer data:
```bash
python featurize.py --datadir data --outdir data/featurized --glove-path data/glove.840B.300d.txt
```
# Training a Model
......
......@@ -5,7 +5,7 @@ __all__ = ["ModelConfig", "TrainerConfig"]
class ModelConfig(object):
vocab_size = 104808
vocab_size = 104810
embedding_dim = 300
embedding_droprate = 0.3
......
#!/bin/bash
wget --no-check-certificate https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json
wget --no-check-certificate https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json
wget --no-check-certificate https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json -O train.json
wget --no-check-certificate https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json -O dev.json
wget http://nlp.stanford.edu/data/glove.840B.300d.zip
unzip glove.840B.300d.zip
""" Official evaluation script for v1.1 of the SQuAD dataset. """
from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r'\b(a|an|the)\b', ' ', text)
def white_space_fix(text):
return ' '.join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return ''.join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def f1_score(prediction, ground_truth):
prediction_tokens = normalize_answer(prediction).split()
ground_truth_tokens = normalize_answer(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(prediction, ground_truth):
return (normalize_answer(prediction) == normalize_answer(ground_truth))
def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def evaluate(dataset, predictions):
f1 = exact_match = total = 0
for article in dataset:
for paragraph in article['paragraphs']:
for qa in paragraph['qas']:
total += 1
if qa['id'] not in predictions:
message = 'Unanswered question ' + qa['id'] + \
' will receive score 0.'
print(message, file=sys.stderr)
continue
ground_truths = list(map(lambda x: x['text'], qa['answers']))
prediction = predictions[qa['id']]
exact_match += metric_max_over_ground_truths(
exact_match_score, prediction, ground_truths)
f1 += metric_max_over_ground_truths(f1_score, prediction,
ground_truths)
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}
if __name__ == '__main__':
expected_version = '1.1'
parser = argparse.ArgumentParser(
description='Evaluation for SQuAD ' + expected_version)
parser.add_argument('dataset_file', help='Dataset file')
parser.add_argument('prediction_file', help='Prediction File')
args = parser.parse_args()
with open(args.dataset_file) as dataset_file:
dataset_json = json.load(dataset_file)
if (dataset_json['version'] != expected_version):
print(
'Evaluation expects v-' + expected_version +
', but got dataset with v-' + dataset_json['version'],
file=sys.stderr)
dataset = dataset_json['data']
with open(args.prediction_file) as prediction_file:
predictions = json.load(prediction_file)
print(json.dumps(evaluate(dataset, predictions)))
# -*- coding: utf-8 -*-
"""
Convert the raw json data into training and validation examples.
"""
from collections import Counter
import json
import os
import io
import string
import click
import numpy as np
import ciseau
from vocab import Vocab
from evaluate import normalize_answer
# Constants
UNK = "<UNK>"
SOS = "<SOS>"
EOS = "<EOS>"
PAD = "<PAD>"
splits = ["train", "dev"]
ARTICLES = {"a", "an", "the", "of"}
# Keep the random embedding matrix the same between runs.
np.random.seed(1234)
def data_stream(path):
""" Given a path json data in Pranav format, convert it to a stream
question/context/answers tuple."""
with io.open(path, "r") as handle:
raw_data = json.load(handle)["data"]
for ex in raw_data:
for paragraph in ex["paragraphs"]:
context = paragraph["context"]
for qa in paragraph["qas"]:
question = qa["question"]
answers = qa["answers"]
if "id" not in qa:
qa_id = -1
else:
qa_id = qa["id"]
yield question, context, answers, qa_id
def build_vocabulary(datadir, outdir, glove_path):
"""Construct the vocabulary object used throughout."""
# We're not going to backprop through the word vectors
# both train and dev words end up in the vocab.
counter = Counter()
for split in splits:
datapath = os.path.join(datadir, split + ".json")
for question, context, _, _ in data_stream(datapath):
for word in ciseau.tokenize(question, normalize_ascii=False):
counter[normalize(word)] += 1
for word in ciseau.tokenize(context, normalize_ascii=False):
counter[normalize(word)] += 1
common_words = [UNK, SOS, EOS, PAD] + [w for w, _ in counter.most_common()]
vocab_path = os.path.join(outdir, "vocab.txt")
with io.open(vocab_path, "w", encoding="utf8") as handle:
handle.write("\n".join(common_words))
return Vocab(outdir)
def normalize_answer_tokens(tokens):
start = 0
end = len(tokens)
while end - start > 1:
first_token = tokens[start].rstrip().lower()
if first_token in string.punctuation or first_token in ARTICLES:
start += 1
else:
break
while end - start > 1:
last_token = tokens[end - 1].rstrip().lower()
if last_token in string.punctuation:
end -= 1
else:
break
return start, end
def tokenize_example(question, context, answers, strip_labels=True):
# Q: How should we choose the right answer
answer = answers[0]["text"]
answer_start = answers[0]["answer_start"]
if strip_labels:
answer_tokens = ciseau.tokenize(answer, normalize_ascii=False)
start_offset, end_offset = normalize_answer_tokens(answer_tokens)
answer = "".join(answer_tokens[start_offset:end_offset])
# add back the piece that was stripped off:
answer_start = answer_start + len("".join(answer_tokens[:start_offset]))
# replace answer string with placeholder
placeholder = "XXXX"
new_context = context[:answer_start] + placeholder + context[answer_start +
len(answer):]
token_context = ciseau.sent_tokenize(new_context, keep_whitespace=True)
token_question = ciseau.tokenize(question)
sentence_label = None
for sent_idx, sent in enumerate(token_context):
answer_start = None
for idx, word in enumerate(sent):
if placeholder in word:
answer_start = idx
break
if answer_start is None:
continue
sentence_label = sent_idx
# deal with cases where the answer is in the middle
# of the word
answer = word.replace(placeholder, answer)
token_answer = ciseau.tokenize(answer)
answer_end = answer_start + len(token_answer) - 1
answer_sent = sent[:answer_start] + token_answer + sent[answer_start +
1:]
break
token_context[sentence_label] = answer_sent
return token_question, token_context, sentence_label, answer_start, answer_end
def normalize(word):
return word.strip()
def same_as_question_feature(question_idxs, context_idxs, vocab):
question_words = [vocab.idx_to_word(idx) for idx in question_idxs]
# remove stop word and puncutation
question_words = set([
w.strip().lower() for w in question_words
if w not in ARTICLES and w not in string.punctuation
])
features = []
for word_idx in context_idxs:
word = vocab.idx_to_word(word_idx)
features.append(int(word.strip().lower() in question_words))
return features
def repeated_word_features(context_idxs, vocab):
context_words = [vocab.idx_to_word(idx) for idx in context_idxs]
word_counter = {}
for word in context_words:
canon = word.strip().lower()
if canon in word_counter:
word_counter[canon] += 1
else:
word_counter[canon] = 1
max_occur = max(word_counter.values())
min_occur = min(word_counter.values())
occur_range = max(1.0, max_occur - min_occur)
repeated_words = []
repeated_word_intensity = []
for word in context_words:
canon = word.strip().lower()
count = word_counter[canon]
repeated = float(count > 1 and canon not in ARTICLES and
canon not in string.punctuation)
intensity = float((count - min_occur) / occur_range)
repeated_words.append(repeated)
repeated_word_intensity.append(intensity)
return repeated_words, repeated_word_intensity
def convert_example_to_indices(example, outfile, vocab):
print("Processing {}".format(outfile))
question, context, answers, qa_id = example
tokenized = tokenize_example(question, context, answers, strip_labels=True)
token_question, token_context, ans_sent, ans_start, ans_end = tokenized
# Convert to indices
question_idxs = [vocab.word_to_idx(normalize(w)) for w in token_question]
# + 1 for end of sentence
sent_lengths = [len(sent) + 1 for sent in token_context]
context_idxs = []
for sent in token_context:
for w in sent:
context_idxs.append(vocab.word_to_idx(normalize(w)))
context_idxs.append(vocab.eos)
same_as_question = same_as_question_feature(question_idxs, context_idxs,
vocab)
repeated_words, repeated_intensity = repeated_word_features(context_idxs,
vocab)
features = {
"question": question_idxs,
"context": context_idxs,
"ans_sentence": ans_sent,
"ans_start": ans_start,
"ans_end": ans_end,
"sent_lengths": sent_lengths,
"same_as_question_word": same_as_question,
"repeated_words": repeated_words,
"repeated_intensity": repeated_intensity,
"qa_id": qa_id
}
# Hack!: This is not a great way to save indices...
with io.open(outfile, "w", encoding="utf8") as handle:
handle.write(unicode(json.dumps(features, ensure_ascii=False)))
def featurize_example(question, context, vocab):
# Convert to indices
question_idxs = [
vocab.word_to_idx(normalize(w))
for w in ciseau.tokenize(question, normalize_ascii=False)
]
context_sents = ciseau.sent_tokenize(
context, keep_whitespace=True, normalize_ascii=False)
# + 1 for end of sentence
sent_lengths = [len(sent) + 1 for sent in context_sents]
context_idxs = []
for sent in context_sents:
for w in sent:
context_idxs.append(vocab.word_to_idx(normalize(w)))
context_idxs.append(vocab.eos)
same_as_question = same_as_question_feature(question_idxs, context_idxs,
vocab)
repeated_words, repeated_intensity = repeated_word_features(context_idxs,
vocab)
return (question_idxs, context_idxs, same_as_question, repeated_words,
repeated_intensity, sent_lengths), context_sents
def random_sample(data, k, replace=False):
indices = np.arange(len(data))
chosen_indices = np.random.choice(indices, k, replace=replace)
return [data[idx] for idx in chosen_indices]
@click.command()
@click.option("--datadir", type=str, help="Path to raw data")
@click.option("--outdir", type=str, help="Path to save the result")
@click.option("--glove-path", default="/mnt/data/jmiller/glove.840B.300d.txt")
def preprocess(datadir, outdir, glove_path):
if not os.path.exists(outdir):
os.makedirs(outdir)
print("Constructing vocabularies...")
vocab = build_vocabulary(datadir, outdir, glove_path)
print("Finished...")
print("Building word embedding matrix...")
vocab.construct_embedding_matrix(glove_path)
print("Finished...")
# Create training featurizations
for split in splits:
results_path = os.path.join(outdir, split)
os.makedirs(results_path)
# process each example
examples = list(data_stream(os.path.join(datadir, split + ".json")))
for idx, example in enumerate(examples):
outfile = os.path.join(results_path, str(idx) + ".json")
convert_example_to_indices(example, outfile, vocab)
print("Building evaluation featurization...")
eval_feats = []
for question, context, _, qa_id in data_stream(
os.path.join(datadir, "dev.json")):
features, tokenized_context = featurize_example(question, context,
vocab)
eval_feats.append((qa_id, tokenized_context, features))
with io.open(
os.path.join(outdir, "eval.json"), "w", encoding="utf8") as handle:
handle.write(unicode(json.dumps(eval_feats, ensure_ascii=False)))
if __name__ == "__main__":
preprocess()
......@@ -67,10 +67,13 @@ You can also visit https://github.com/baidu-research/GloballyNormalizedReader to
docker pull paddledev/paddle
```
2. Download all necessary data by running:
```bash
cd data && ./download.sh
```
3. **(TODO) add the preprocess and featurizer scripts.**
```bash
cd data && ./download.sh && cd ..
```
3. Preprocess and featurizer data:
```bash
python featurize.py --datadir data --outdir data/featurized --glove-path data/glove.840B.300d.txt
```
# Training a Model
......
......@@ -195,7 +195,7 @@ def search_answer(doc_lstm_outs, sentence_idx, start_idx, end_idx, config,
"""Search the answer from the document.
The search process for this layer begins with searching a target sequence
from a nested sequence by using paddle.lauer.kmax_seq_score and
from a nested sequence by using paddle.layer.kmax_seq_score and
paddle.layer.sub_nested_seq_layer. In the first search step, top beam size
sequences with highest scores, indices of these top k sequences in the
original nested sequence, and the ground truth (also called gold)
......
# -*- coding: utf-8 -*-
import os
import io
import numpy as np
# Constants
UNK = "<UNK>"
SOS = "<SOS>"
EOS = "<EOS>"
PAD = "<PAD>"
VOCAB_DIM = 2196017
EMBEDDING_DIM = 300
WORD2VEC = None
class Vocab(object):
"""Class to hold the vocabulary for the SquadDataset."""
def __init__(self, path):
self._id_to_word = []
self._word_to_id = {}
self._word_ending_tables = {}
self._path = path
self._pad = -1
self._unk = None
self._sos = None
self._eos = None
# first read in the base vocab
with io.open(os.path.join(path, "vocab.txt"), "r") as f:
for idx, line in enumerate(f):
word_name = line.strip()
if word_name == UNK:
self._unk = idx
elif word_name == SOS:
self._sos = idx
elif word_name == EOS:
self._eos = idx
self._id_to_word.append(word_name)
self._word_to_id[word_name] = idx
@property
def unk(self):
return self._unk
@property
def sos(self):
return self._sos
@property
def eos(self):
return self._eos
@property
def size(self):
return len(self._id_to_word)
def word_to_idx(self, word):
if word in self._word_to_id:
return self._word_to_id[word]
return self.unk
def idx_to_word(self, idx):
if idx == self._pad:
return PAD
if idx < self.size:
return self._id_to_word[idx]
return "ERROR"
def decode(self, idxs):
return " ".join([self.idx_to_word(idx) for idx in idxs])
def encode(self, sentence):
return [self.word_to_idx(word) for word in sentence]
@property
def word_embeddings(self):
embedding_path = os.path.join(self._path, "embeddings.npy")
embeddings = np.load(embedding_path)
return embeddings
def construct_embedding_matrix(self, glove_path):
# Randomly initialize word embeddings
embeddings = np.random.randn(self.size,
EMBEDDING_DIM).astype(np.float32)
load_word_vectors(
param=embeddings,
vocab=self._id_to_word,
path=glove_path,
missing_word_alternative=missing_word_heuristic,
missing_word_value=lambda: 0.0)
embedding_path = os.path.join(self._path, "embeddings.npy")
np.save(embedding_path, embeddings)
def missing_word_heuristic(word, word2vec):
"""
propose alternate spellings of a word to match against
pretrained word vectors (so that if the original spelling
has no pretrained vector, but alternate spelling does,
a vector can be retrieved anyways.)
"""
if len(word) > 5:
# try to find similar words that share
# the same 5 character ending:
most_sim = word2vec.words_ending_in(word[-5:])
if len(most_sim) > 0:
most_sim = sorted(
most_sim,
reverse=True,
key=lambda x: (
(word[0].isupper() == x[0].isupper()) +
(word.lower()[:3] == x.lower()[:3]) +
(word.lower()[:4] == x.lower()[:4]) +
(abs(len(word) - len(x)) < 5)
)
)
return most_sim[:1]
if all(not c.isalpha() for c in word):
# this is a fully numerical answer (and non alpha)
return ['13', '9', '100', '2.0']
return [
# add a capital letter
word.capitalize(),
# see if word has spurious period
word.split(".")[0],
# see if word has spurious backslash
word.split("/")[0],
# see if word has spurious parenthesis
word.split(")")[0],
word.split("(")[0]
]
class Word2Vec(object):
"""
Load word2vec result from file
"""
def __init__(self, vocab_size, vector_size):
self.syn0 = np.zeros((vocab_size, vector_size), dtype=np.float32)
self.index2word = []
self.vocab_size = vocab_size
self.vector_size = vector_size
def load_word2vec_format(self, path):
with io.open(path, "r") as fin:
for word_id in range(self.vocab_size):
line = fin.readline()
parts = line.rstrip("\n").rstrip().split(" ")
if len(parts) != self.vector_size + 1:
raise ValueError(
"invalid vector on line {}".format(word_id))
word, weights = parts[0], [np.float32(x) for x in parts[1:]]
self.syn0[word_id] = weights
self.index2word.append(word)
return self
class FastWord2vec(object):
"""
Load word2vec model, cache the embedding matrix using numpy
and memory-map it so that future loads are fast.
"""
def __init__(self, path):
if not os.path.exists(path + ".npy"):
word2vec = Word2Vec(VOCAB_DIM,
EMBEDDING_DIM).load_word2vec_format(path)
# save as numpy
np.save(path + ".npy", word2vec.syn0)
# also save the vocab
with io.open(path + ".vocab", "w", encoding="utf8") as fout:
for word in word2vec.index2word:
fout.write(word + "\n")
self.syn0 = np.load(path + ".npy", mmap_mode="r")
self.index2word = [l.strip("\n") for l in io.open(path + ".vocab", "r")]
self.word2index = {word: k for k, word in enumerate(self.index2word)}
self._word_ending_tables = {}
self._word_beginning_tables = {}
def __getitem__(self, key):
return np.array(self.syn0[self.word2index[key]])
def __contains__(self, key):
return key in self.word2index
def words_ending_in(self, word_ending):
if len(word_ending) == 0:
return self.index2word
self._build_word_ending_table(len(word_ending))
return self._word_ending_tables[len(word_ending)].get(word_ending, [])
def _build_word_ending_table(self, length):
if length not in self._word_ending_tables:
table = {}
for word in self.index2word:
if len(word) >= length:
ending = word[-length:]
if ending not in table:
table[ending] = [word]
else:
table[ending].append(word)
self._word_ending_tables[length] = table
def words_starting_in(self, word_beginning):
if len(word_beginning) == 0:
return self.index2word
self._build_word_beginning_table(len(word_beginning))
return self._word_beginning_tables[len(word_beginning)].get(
word_beginning, [])
def _build_word_beginning_table(self, length):
if length not in self._word_beginning_tables:
table = {}
for word in get_progress_bar('building prefix lookup ')(
self.index2word):
if len(word) >= length:
ending = word[:length]
if ending not in table:
table[ending] = [word]
else:
table[ending].append(word)
self._word_beginning_tables[length] = table
@staticmethod
def get(path):
global WORD2VEC
if WORD2VEC is None:
WORD2VEC = FastWord2vec(path)
return WORD2VEC
def load_word_vectors(param,
vocab,
path,
verbose=True,
missing_word_alternative=None,
missing_word_value=None):
"""
Add the pre-trained word embeddings stored under path to the parameter
matrix `param` that has size `vocab x embedding_dim`.
Arguments:
param : np.array
vocab : list<str>
path : str, location of the pretrained word embeddings
verbose : (optional) bool, whether to print how
many words were recovered
"""
word2vec = FastWord2vec.get(path)
missing = 0
for idx, word in enumerate(vocab):
try:
param[idx, :] = word2vec[word]
except KeyError:
try:
param[idx, :] = word2vec[word.lower()]
except KeyError:
found = False
if missing_word_alternative is not None:
alternatives = missing_word_alternative(word, word2vec)
if isinstance(alternatives, str):
alternatives = [alternatives]
assert (isinstance(alternatives, list)), (
"missing_word_alternative should return a list of strings."
)
for alternative in alternatives:
if alternative in word2vec:
param[idx, :] = word2vec[alternative]
found = True
break
if not found:
if missing_word_value is not None:
param[idx, :] = missing_word_value()
missing += 1
if verbose:
print(
"Loaded {} words, {} missing".format(len(vocab) - missing, missing))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册