Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
cb673c14
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cb673c14
编写于
9月 22, 2020
作者:
Z
zhangting2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fuse_bn_add_act_ops args
上级
295c16b6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
105 addition
and
32 deletion
+105
-32
PaddleCV/image_classification/build_model.py
PaddleCV/image_classification/build_model.py
+2
-1
PaddleCV/image_classification/models/resnet.py
PaddleCV/image_classification/models/resnet.py
+101
-31
PaddleCV/image_classification/scripts/train/ResNet50_fp16.sh
PaddleCV/image_classification/scripts/train/ResNet50_fp16.sh
+1
-0
PaddleCV/image_classification/utils/utility.py
PaddleCV/image_classification/utils/utility.py
+1
-0
未找到文件。
PaddleCV/image_classification/build_model.py
浏览文件 @
cb673c14
...
...
@@ -41,7 +41,8 @@ def _basic_model(data, model, args, is_train):
image_in
.
stop_gradient
=
image
.
stop_gradient
net_out
=
model
.
net
(
input
=
image_in
,
class_dim
=
args
.
class_dim
,
data_format
=
args
.
data_format
)
data_format
=
args
.
data_format
,
fuse_bn_add_act
=
args
.
fuse_bn_add_act_ops
)
else
:
net_out
=
model
.
net
(
input
=
image
,
class_dim
=
args
.
class_dim
)
softmax_out
=
fluid
.
layers
.
softmax
(
net_out
,
use_cudnn
=
False
)
...
...
PaddleCV/image_classification/models/resnet.py
浏览文件 @
cb673c14
...
...
@@ -31,7 +31,7 @@ class ResNet():
def
__init__
(
self
,
layers
=
50
):
self
.
layers
=
layers
def
net
(
self
,
input
,
class_dim
=
1000
,
data_format
=
"NCHW"
):
def
net
(
self
,
input
,
class_dim
=
1000
,
data_format
=
"NCHW"
,
fuse_bn_add_act
=
False
):
layers
=
self
.
layers
supported_layers
=
[
18
,
34
,
50
,
101
,
152
]
assert
layers
in
supported_layers
,
\
...
...
@@ -77,7 +77,8 @@ class ResNet():
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
name
=
conv_name
,
data_format
=
data_format
)
data_format
=
data_format
,
fuse_bn_add_act
=
fuse_bn_add_act
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
,
data_format
=
data_format
)
...
...
@@ -97,7 +98,8 @@ class ResNet():
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
is_first
=
block
==
i
==
0
,
name
=
conv_name
,
data_format
=
data_format
)
data_format
=
data_format
,
fuse_bn_add_act
=
fuse_bn_add_act
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
,
data_format
=
data_format
)
...
...
@@ -155,7 +157,7 @@ class ResNet():
else
:
return
input
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
,
name
,
data_format
):
def
bottleneck_block
(
self
,
input
,
num_filters
,
stride
,
name
,
data_format
,
fuse_bn_add_act
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
...
...
@@ -171,26 +173,56 @@ class ResNet():
act
=
'relu'
,
name
=
name
+
"_branch2b"
,
data_format
=
data_format
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
,
data_format
=
data_format
)
if
not
fuse_bn_add_act
:
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
name
=
name
+
"_branch2c"
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
,
name
=
name
+
".add.output.5"
)
else
:
name
=
name
+
"_branch2c"
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
+
'.conv2d.output.1'
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
*
4
,
stride
,
is_first
=
False
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
bn_name
=
"bn"
+
name
[
3
:]
short
=
fluid
.
contrib
.
layers
.
fused_bn_add_act
(
conv2
,
short
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
,
name
=
name
+
".add.output.5"
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv2
,
act
=
'relu'
,
name
=
name
+
".add.output.5"
)
return
short
def
basic_block
(
self
,
input
,
num_filters
,
stride
,
is_first
,
name
,
data_format
):
def
basic_block
(
self
,
input
,
num_filters
,
stride
,
is_first
,
name
,
data_format
,
fuse_bn_add_act
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
num_filters
,
...
...
@@ -199,16 +231,54 @@ class ResNet():
stride
=
stride
,
name
=
name
+
"_branch2a"
,
data_format
=
data_format
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
,
stride
,
is_first
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
if
not
fuse_bn_add_act
:
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
act
=
None
,
name
=
name
+
"_branch2b"
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
,
stride
,
is_first
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
conv1
,
act
=
'relu'
)
else
:
name
=
name
+
"_branch2b"
conv1
=
fluid
.
layers
.
conv2d
(
input
=
conv0
,
num_filters
=
num_filters
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
groups
=
1
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
,
name
=
name
+
'.conv2d.output.1'
,
data_format
=
data_format
)
short
=
self
.
shortcut
(
input
,
num_filters
,
stride
,
is_first
,
name
=
name
+
"_branch1"
,
data_format
=
data_format
)
bn_name
=
"bn"
+
name
[
3
:]
short
=
fluid
.
contrib
.
layers
.
fused_bn_add_act
(
conv1
,
short
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
'_scale'
),
bias_attr
=
ParamAttr
(
bn_name
+
'_offset'
),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
return
short
def
ResNet18
():
...
...
PaddleCV/image_classification/scripts/train/ResNet50_fp16.sh
浏览文件 @
cb673c14
...
...
@@ -30,6 +30,7 @@ python train.py \
--data_format
=
${
DATA_FORMAT
}
\
--fuse_elewise_add_act_ops
=
true
\
--fuse_bn_act_ops
=
true
\
--fuse_bn_add_act_ops
=
false
\
--validate
=
true
\
--is_profiler
=
false
\
--profiler_path
=
profile/
\
...
...
PaddleCV/image_classification/utils/utility.py
浏览文件 @
cb673c14
...
...
@@ -145,6 +145,7 @@ def parse_args():
add_arg
(
'data_format'
,
str
,
"NCHW"
,
"Tensor data format when training."
)
add_arg
(
'fuse_elewise_add_act_ops'
,
bool
,
False
,
"Whether to use elementwise_act fusion."
)
add_arg
(
'fuse_bn_act_ops'
,
bool
,
False
,
"Whether to use batch_norm and act fusion."
)
add_arg
(
'fuse_bn_add_act_ops'
,
bool
,
False
,
"Whether to use batch_norm, elementwise_add and act fusion. This is only used for AMP training."
)
add_arg
(
'use_label_smoothing'
,
bool
,
False
,
"Whether to use label_smoothing"
)
add_arg
(
'label_smoothing_epsilon'
,
float
,
0.1
,
"The value of label_smoothing_epsilon parameter"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录