提交 cb673c14 编写于 作者: Z zhangting2020

add fuse_bn_add_act_ops args

上级 295c16b6
......@@ -41,7 +41,8 @@ def _basic_model(data, model, args, is_train):
image_in.stop_gradient = image.stop_gradient
net_out = model.net(input=image_in,
class_dim=args.class_dim,
data_format=args.data_format)
data_format=args.data_format,
fuse_bn_add_act=args.fuse_bn_add_act_ops)
else:
net_out = model.net(input=image, class_dim=args.class_dim)
softmax_out = fluid.layers.softmax(net_out, use_cudnn=False)
......
......@@ -31,7 +31,7 @@ class ResNet():
def __init__(self, layers=50):
self.layers = layers
def net(self, input, class_dim=1000, data_format="NCHW"):
def net(self, input, class_dim=1000, data_format="NCHW", fuse_bn_add_act=False):
layers = self.layers
supported_layers = [18, 34, 50, 101, 152]
assert layers in supported_layers, \
......@@ -77,7 +77,8 @@ class ResNet():
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
name=conv_name,
data_format=data_format)
data_format=data_format,
fuse_bn_add_act=fuse_bn_add_act)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True, data_format=data_format)
......@@ -97,7 +98,8 @@ class ResNet():
stride=2 if i == 0 and block != 0 else 1,
is_first=block == i == 0,
name=conv_name,
data_format=data_format)
data_format=data_format,
fuse_bn_add_act=fuse_bn_add_act)
pool = fluid.layers.pool2d(
input=conv, pool_type='avg', global_pooling=True, data_format=data_format)
......@@ -155,7 +157,7 @@ class ResNet():
else:
return input
def bottleneck_block(self, input, num_filters, stride, name, data_format):
def bottleneck_block(self, input, num_filters, stride, name, data_format, fuse_bn_add_act):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
......@@ -171,26 +173,56 @@ class ResNet():
act='relu',
name=name + "_branch2b",
data_format=data_format)
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)
if not fuse_bn_add_act:
conv2 = self.conv_bn_layer(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
name=name + "_branch2c",
data_format=data_format)
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
else:
name = name + "_branch2c"
conv2 = fluid.layers.conv2d(
input=conv1,
num_filters=num_filters * 4,
filter_size=1,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1',
data_format=data_format)
short = self.shortcut(
input,
num_filters * 4,
stride,
is_first=False,
name=name + "_branch1",
data_format=data_format)
bn_name = "bn" + name[3:]
short = fluid.contrib.layers.fused_bn_add_act(
conv2,
short,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance',
name=name + ".add.output.5")
return fluid.layers.elementwise_add(
x=short, y=conv2, act='relu', name=name + ".add.output.5")
return short
def basic_block(self, input, num_filters, stride, is_first, name, data_format):
def basic_block(self, input, num_filters, stride, is_first, name,
data_format, fuse_bn_add_act):
conv0 = self.conv_bn_layer(
input=input,
num_filters=num_filters,
......@@ -199,16 +231,54 @@ class ResNet():
stride=stride,
name=name + "_branch2a",
data_format=data_format)
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b",
data_format=data_format)
short = self.shortcut(
input, num_filters, stride, is_first, name=name + "_branch1", data_format=data_format)
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
if not fuse_bn_add_act:
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
act=None,
name=name + "_branch2b",
data_format=data_format)
short = self.shortcut(
input,
num_filters,
stride,
is_first,
name=name + "_branch1",
data_format=data_format)
return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
else:
name = name + "_branch2b"
conv1 = fluid.layers.conv2d(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=1,
padding=1,
groups=1,
act=None,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
name=name + '.conv2d.output.1',
data_format=data_format)
short = self.shortcut(
input,
num_filters,
stride,
is_first,
name=name + "_branch1",
data_format=data_format)
bn_name = "bn" + name[3:]
short = fluid.contrib.layers.fused_bn_add_act(
conv1,
short,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
return short
def ResNet18():
......
......@@ -30,6 +30,7 @@ python train.py \
--data_format=${DATA_FORMAT} \
--fuse_elewise_add_act_ops=true \
--fuse_bn_act_ops=true \
--fuse_bn_add_act_ops=false \
--validate=true \
--is_profiler=false \
--profiler_path=profile/ \
......
......@@ -145,6 +145,7 @@ def parse_args():
add_arg('data_format', str, "NCHW", "Tensor data format when training.")
add_arg('fuse_elewise_add_act_ops', bool, False, "Whether to use elementwise_act fusion.")
add_arg('fuse_bn_act_ops', bool, False, "Whether to use batch_norm and act fusion.")
add_arg('fuse_bn_add_act_ops', bool, False, "Whether to use batch_norm, elementwise_add and act fusion. This is only used for AMP training.")
add_arg('use_label_smoothing', bool, False, "Whether to use label_smoothing")
add_arg('label_smoothing_epsilon', float, 0.1, "The value of label_smoothing_epsilon parameter")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册