Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c8250eb7
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c8250eb7
编写于
2月 27, 2019
作者:
T
tink2123
提交者:
dengkaipeng
3月 11, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add profile
上级
c6c66954
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
180 addition
and
0 deletion
+180
-0
fluid/PaddleCV/yolov3/profile.py
fluid/PaddleCV/yolov3/profile.py
+180
-0
未找到文件。
fluid/PaddleCV/yolov3/profile.py
0 → 100644
浏览文件 @
c8250eb7
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
sys
import
numpy
as
np
import
random
import
time
import
shutil
from
utility
import
parse_args
,
print_arguments
,
SmoothedValue
import
paddle
import
paddle.fluid
as
fluid
import
reader
import
paddle.fluid.profiler
as
profiler
import
models
from
learning_rate
import
exponential_with_warmup_decay
from
config.config
import
cfg
def
train
():
model
=
models
.
YOLOv3
(
cfg
.
model_cfg_path
,
use_pyreader
=
cfg
.
use_pyreader
)
model
.
build_model
()
input_size
=
model
.
get_input_size
()
loss
=
model
.
loss
()
loss
.
persistable
=
True
hyperparams
=
model
.
get_hyperparams
()
devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
or
""
devices_num
=
len
(
devices
.
split
(
","
))
print
(
"Found {} CUDA devices."
.
format
(
devices_num
))
learning_rate
=
float
(
hyperparams
[
'learning_rate'
])
num_iterations
=
cfg
.
max_iter
boundaries
=
cfg
.
lr_steps
gamma
=
cfg
.
lr_gamma
step_num
=
len
(
cfg
.
lr_steps
)
if
isinstance
(
gamma
,
list
):
values
=
[
learning_rate
*
g
for
g
in
gamma
]
else
:
values
=
[
learning_rate
*
(
gamma
**
i
)
for
i
in
range
(
step_num
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
exponential_with_warmup_decay
(
learning_rate
=
learning_rate
,
boundaries
=
boundaries
,
values
=
values
,
warmup_iter
=
cfg
.
warm_up_iter
,
warmup_factor
=
cfg
.
warm_up_factor
,
start_step
=
cfg
.
start_iter
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
float
(
hyperparams
[
'decay'
])),
momentum
=
float
(
hyperparams
[
'momentum'
]))
optimizer
.
minimize
(
loss
)
fluid
.
memory_optimize
(
fluid
.
default_main_program
())
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
base_exe
=
fluid
.
Executor
(
place
)
base_exe
.
run
(
fluid
.
default_startup_program
())
if
cfg
.
pretrain_base
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
cfg
.
pretrain_base
,
var
.
name
))
fluid
.
io
.
load_vars
(
base_exe
,
cfg
.
pretrain_base
,
predicate
=
if_exist
)
if
cfg
.
parallel
:
exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
bool
(
cfg
.
use_gpu
),
loss_name
=
loss
.
name
)
else
:
exe
=
base_exe
random_sizes
=
[
cfg
.
input_size
]
if
cfg
.
random_shape
:
random_sizes
=
[
32
*
i
for
i
in
range
(
10
,
20
)]
random_shape_iter
=
cfg
.
max_iter
-
cfg
.
start_iter
-
cfg
.
tune_iter
if
cfg
.
use_pyreader
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
])
/
devices_num
,
shuffle
=
True
,
random_shape_iter
=
random_shape_iter
,
random_sizes
=
random_sizes
,
interval
=
10
,
pyreader_num
=
devices_num
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
py_reader
=
model
.
py_reader
py_reader
.
decorate_paddle_reader
(
train_reader
)
else
:
train_reader
=
reader
.
train
(
input_size
,
batch_size
=
int
(
hyperparams
[
'batch'
]),
shuffle
=
True
,
random_shape_iter
=
random_shape_iter
,
random_sizes
=
random_sizes
,
interval
=
10
,
use_multiprocessing
=
cfg
.
use_multiprocess
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
model
.
feeds
())
fetch_list
=
[
loss
]
def
run
(
iterations
):
reader_time
=
[]
run_time
=
[]
total_images
=
0
for
batch_id
in
range
(
iterations
):
start_time
=
time
.
time
()
data
=
next
(
train_reader
())
end_time
=
time
.
time
()
reader_time
.
append
(
end_time
-
start_time
)
start_time
=
time
.
time
()
if
cfg
.
parallel
:
losses
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
))
else
:
losses
=
base_exe
.
run
(
fluid
.
default_main_program
(),
fetch_list
=
[
v
.
name
for
v
in
fetch_list
],
feed
=
feeder
.
feed
(
data
))
end_time
=
time
.
time
()
run_time
.
append
(
end_time
-
start_time
)
total_images
+=
len
(
data
)
lr
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'learning_rate'
)
.
get_tensor
())
print
(
"Batch {:d}, lr {:.6f}, loss {:.6f} "
.
format
(
batch_id
,
lr
[
0
],
losses
[
0
][
0
]))
return
reader_time
,
run_time
,
total_images
def
run_pyreader
(
iterations
):
reader_time
=
[
0
]
run_time
=
[]
total_images
=
0
py_reader
.
start
()
try
:
for
batch_id
in
range
(
iterations
):
start_time
=
time
.
time
()
if
cfg
.
parallel
:
losses
=
exe
.
run
(
fetch_list
=
[
v
.
name
for
v
in
fetch_list
])
else
:
losses
=
base_exe
.
run
(
fluid
.
default_main_program
(),
fetch_list
=
[
v
.
name
for
v
in
fetch_list
])
end_time
=
time
.
time
()
run_time
.
append
(
end_time
-
start_time
)
total_images
+=
devices_num
lr
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
'learning_rate'
)
.
get_tensor
())
print
(
"Batch {:d}, lr {:.6f}, loss {:.6f} "
.
format
(
batch_id
,
lr
[
0
],
losses
[
0
][
0
]))
except
fluid
.
core
.
EOFException
:
py_reader
.
reset
()
return
reader_time
,
run_time
,
total_images
run_func
=
run
if
not
cfg
.
use_pyreader
else
run_pyreader
# warm-up
run_func
(
2
)
#profiling
start
=
time
.
time
()
if
cfg
.
use_profile
:
with
profiler
.
profiler
(
'GPU'
,
'total'
,
'/tmp/profile_file'
):
reader_time
,
run_time
,
total_images
=
run_func
(
num_iterations
)
else
:
reader_time
,
run_time
,
total_images
=
run_func
(
num_iterations
)
end
=
time
.
time
()
total_time
=
end
-
start
print
(
"Total time: {0}, reader time: {1} s, run time: {2} s, images/s: {3}"
.
format
(
total_time
,
np
.
sum
(
reader_time
),
np
.
sum
(
run_time
),
total_images
/
total_time
))
if
__name__
==
'__main__'
:
args
=
parse_args
()
print_arguments
(
args
)
train
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录