Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c35c10a8
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c35c10a8
编写于
12月 27, 2019
作者:
Z
zhongpu
提交者:
hong
12月 27, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix resnet model for dygraph incompatible upgrade, test=develop (#4114)
上级
1d50478e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
37 deletion
+37
-37
dygraph/resnet/train.py
dygraph/resnet/train.py
+37
-37
未找到文件。
dygraph/resnet/train.py
浏览文件 @
c35c10a8
...
@@ -18,7 +18,7 @@ import ast
...
@@ -18,7 +18,7 @@ import ast
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
FC
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid
import
framework
from
paddle.fluid
import
framework
...
@@ -53,7 +53,7 @@ args = parse_args()
...
@@ -53,7 +53,7 @@ args = parse_args()
batch_size
=
args
.
batch_size
batch_size
=
args
.
batch_size
def
optimizer_setting
():
def
optimizer_setting
(
parameter_list
=
None
):
total_images
=
IMAGENET1000
total_images
=
IMAGENET1000
...
@@ -64,28 +64,36 @@ def optimizer_setting():
...
@@ -64,28 +64,36 @@ def optimizer_setting():
lr
=
[]
lr
=
[]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
if
fluid
.
in_dygraph_mode
():
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
optimizer
=
fluid
.
optimizer
.
Momentum
(
boundaries
=
bd
,
values
=
lr
),
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
momentum
=
momentum_rate
,
boundaries
=
bd
,
values
=
lr
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
),
parameter_list
=
parameter_list
)
else
:
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
return
optimizer
return
optimizer
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
filter_size
,
filter_size
,
stride
=
1
,
stride
=
1
,
groups
=
1
,
groups
=
1
,
act
=
None
):
act
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
(
name_scope
)
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
self
.
_conv
=
Conv2D
(
self
.
full_name
()
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
stride
=
stride
,
stride
=
stride
,
...
@@ -94,7 +102,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
...
@@ -94,7 +102,7 @@ class ConvBNLayer(fluid.dygraph.Layer):
act
=
None
,
act
=
None
,
bias_attr
=
False
)
bias_attr
=
False
)
self
.
_batch_norm
=
BatchNorm
(
self
.
full_name
(),
num_filters
,
act
=
act
)
self
.
_batch_norm
=
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_conv
(
inputs
)
...
@@ -105,28 +113,24 @@ class ConvBNLayer(fluid.dygraph.Layer):
...
@@ -105,28 +113,24 @@ class ConvBNLayer(fluid.dygraph.Layer):
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
class
BottleneckBlock
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
def
__init__
(
self
,
name_scope
,
num_channels
,
num_channels
,
num_filters
,
num_filters
,
stride
,
stride
,
shortcut
=
True
):
shortcut
=
True
):
super
(
BottleneckBlock
,
self
).
__init__
(
name_scope
)
super
(
BottleneckBlock
,
self
).
__init__
()
self
.
conv0
=
ConvBNLayer
(
self
.
conv0
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
1
,
filter_size
=
1
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv1
=
ConvBNLayer
(
self
.
conv1
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
,
num_filters
=
num_filters
,
filter_size
=
3
,
filter_size
=
3
,
stride
=
stride
,
stride
=
stride
,
act
=
'relu'
)
act
=
'relu'
)
self
.
conv2
=
ConvBNLayer
(
self
.
conv2
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_filters
,
num_channels
=
num_filters
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -134,7 +138,6 @@ class BottleneckBlock(fluid.dygraph.Layer):
...
@@ -134,7 +138,6 @@ class BottleneckBlock(fluid.dygraph.Layer):
if
not
shortcut
:
if
not
shortcut
:
self
.
short
=
ConvBNLayer
(
self
.
short
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_channels
=
num_channels
,
num_filters
=
num_filters
*
4
,
num_filters
=
num_filters
*
4
,
filter_size
=
1
,
filter_size
=
1
,
...
@@ -161,8 +164,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
...
@@ -161,8 +164,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
class
ResNet
(
fluid
.
dygraph
.
Layer
):
class
ResNet
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
name_scope
,
layers
=
50
,
class_dim
=
102
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
102
):
super
(
ResNet
,
self
).
__init__
(
name_scope
)
super
(
ResNet
,
self
).
__init__
()
self
.
layers
=
layers
self
.
layers
=
layers
supported_layers
=
[
50
,
101
,
152
]
supported_layers
=
[
50
,
101
,
152
]
...
@@ -175,47 +178,46 @@ class ResNet(fluid.dygraph.Layer):
...
@@ -175,47 +178,46 @@ class ResNet(fluid.dygraph.Layer):
depth
=
[
3
,
4
,
23
,
3
]
depth
=
[
3
,
4
,
23
,
3
]
elif
layers
==
152
:
elif
layers
==
152
:
depth
=
[
3
,
8
,
36
,
3
]
depth
=
[
3
,
8
,
36
,
3
]
num_channels
=
[
64
,
256
,
512
,
1024
]
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
self
.
conv
=
ConvBNLayer
(
self
.
conv
=
ConvBNLayer
(
self
.
full_name
(),
num_channels
=
3
,
num_channels
=
3
,
num_filters
=
64
,
num_filters
=
64
,
filter_size
=
7
,
filter_size
=
7
,
stride
=
2
,
stride
=
2
,
act
=
'relu'
)
act
=
'relu'
)
self
.
pool2d_max
=
Pool2D
(
self
.
pool2d_max
=
Pool2D
(
self
.
full_name
(),
pool_size
=
3
,
pool_size
=
3
,
pool_stride
=
2
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_padding
=
1
,
pool_type
=
'max'
)
pool_type
=
'max'
)
self
.
bottleneck_block_list
=
[]
self
.
bottleneck_block_list
=
[]
num_channels
=
64
for
block
in
range
(
len
(
depth
)):
for
block
in
range
(
len
(
depth
)):
shortcut
=
False
shortcut
=
False
for
i
in
range
(
depth
[
block
]):
for
i
in
range
(
depth
[
block
]):
bottleneck_block
=
self
.
add_sublayer
(
bottleneck_block
=
self
.
add_sublayer
(
'bb_%d_%d'
%
(
block
,
i
),
'bb_%d_%d'
%
(
block
,
i
),
BottleneckBlock
(
BottleneckBlock
(
self
.
full_name
(),
num_channels
=
num_channels
[
block
]
num_channels
=
num_channels
,
if
i
==
0
else
num_filters
[
block
]
*
4
,
num_filters
=
num_filters
[
block
],
num_filters
=
num_filters
[
block
],
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
stride
=
2
if
i
==
0
and
block
!=
0
else
1
,
shortcut
=
shortcut
))
shortcut
=
shortcut
))
num_channels
=
bottleneck_block
.
_num_channels_out
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
self
.
bottleneck_block_list
.
append
(
bottleneck_block
)
shortcut
=
True
shortcut
=
True
self
.
pool2d_avg
=
Pool2D
(
self
.
pool2d_avg
=
Pool2D
(
self
.
full_name
(),
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
self
.
pool2d_avg_output
=
num_filters
[
len
(
num_filters
)
-
1
]
*
4
*
1
*
1
import
math
import
math
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
stdv
=
1.0
/
math
.
sqrt
(
2048
*
1.0
)
self
.
out
=
FC
(
self
.
full_name
()
,
self
.
out
=
Linear
(
self
.
pool2d_avg_output
,
size
=
class_dim
,
class_dim
,
act
=
'softmax'
,
act
=
'softmax'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
initializer
=
fluid
.
initializer
.
Uniform
(
-
stdv
,
stdv
)))
...
@@ -226,6 +228,7 @@ class ResNet(fluid.dygraph.Layer):
...
@@ -226,6 +228,7 @@ class ResNet(fluid.dygraph.Layer):
for
bottleneck_block
in
self
.
bottleneck_block_list
:
for
bottleneck_block
in
self
.
bottleneck_block_list
:
y
=
bottleneck_block
(
y
)
y
=
bottleneck_block
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
self
.
pool2d_avg
(
y
)
y
=
fluid
.
layers
.
reshape
(
y
,
shape
=
[
-
1
,
self
.
pool2d_avg_output
])
y
=
self
.
out
(
y
)
y
=
self
.
out
(
y
)
return
y
return
y
...
@@ -265,16 +268,13 @@ def eval(model, data):
...
@@ -265,16 +268,13 @@ def eval(model, data):
# print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
# print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
if
batch_id
%
10
==
0
:
if
batch_id
%
10
==
0
:
print
(
"test | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f"
%
\
print
(
"test | batch step %d, acc1 %0.3f acc5 %0.3f"
%
\
(
batch_id
,
total_loss
/
total_sample
,
\
(
batch_id
,
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
if
args
.
ce
:
if
args
.
ce
:
print
(
"kpis
\t
test_acc1
\t
%0.3f"
%
(
total_acc1
/
total_sample
))
print
(
"kpis
\t
test_acc1
\t
%0.3f"
%
(
total_acc1
/
total_sample
))
print
(
"kpis
\t
test_acc5
\t
%0.3f"
%
(
total_acc5
/
total_sample
))
print
(
"kpis
\t
test_acc5
\t
%0.3f"
%
(
total_acc5
/
total_sample
))
print
(
"kpis
\t
test_loss
\t
%0.3f"
%
(
total_loss
/
total_sample
))
print
(
"final eval acc1 %0.3f acc5 %0.3f"
%
\
print
(
"final eval loss %0.3f acc1 %0.3f acc5 %0.3f"
%
\
(
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
(
total_loss
/
total_sample
,
\
total_acc1
/
total_sample
,
total_acc5
/
total_sample
))
def
train_resnet
():
def
train_resnet
():
...
@@ -292,8 +292,8 @@ def train_resnet():
...
@@ -292,8 +292,8 @@ def train_resnet():
if
args
.
use_data_parallel
:
if
args
.
use_data_parallel
:
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
strategy
=
fluid
.
dygraph
.
parallel
.
prepare_context
()
resnet
=
ResNet
(
"resnet"
)
resnet
=
ResNet
()
optimizer
=
optimizer_setting
()
optimizer
=
optimizer_setting
(
parameter_list
=
resnet
.
parameters
()
)
if
args
.
use_data_parallel
:
if
args
.
use_data_parallel
:
resnet
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
resnet
,
strategy
)
resnet
=
fluid
.
dygraph
.
parallel
.
DataParallel
(
resnet
,
strategy
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录