Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c2d68974
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2d68974
编写于
10月 25, 2019
作者:
L
Liufang Sang
提交者:
Bai Yifan
10月 25, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddleSlim] fix details in code format (#3766)
* fix details test=release/1.6 * fix code format test=release/1.6
上级
a8cf62b1
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
163 addition
and
160 deletion
+163
-160
PaddleCV/PaddleDetection/slim/eval.py
PaddleCV/PaddleDetection/slim/eval.py
+17
-18
PaddleCV/PaddleDetection/slim/infer.py
PaddleCV/PaddleDetection/slim/infer.py
+14
-14
PaddleCV/PaddleDetection/slim/quantization/compress.py
PaddleCV/PaddleDetection/slim/quantization/compress.py
+16
-18
PaddleCV/PaddleDetection/slim/quantization/freeze.py
PaddleCV/PaddleDetection/slim/quantization/freeze.py
+41
-46
PaddleSlim/classification/eval.py
PaddleSlim/classification/eval.py
+15
-11
PaddleSlim/classification/infer.py
PaddleSlim/classification/infer.py
+19
-16
PaddleSlim/classification/quantization/compress.py
PaddleSlim/classification/quantization/compress.py
+3
-2
PaddleSlim/classification/quantization/freeze.py
PaddleSlim/classification/quantization/freeze.py
+38
-35
未找到文件。
PaddleCV/PaddleDetection/slim/eval.py
浏览文件 @
c2d68974
...
@@ -32,11 +32,13 @@ from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
...
@@ -32,11 +32,13 @@ from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
def
set_paddle_flags
(
**
kwargs
):
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
set_paddle_flags
(
...
@@ -59,6 +61,8 @@ import logging
...
@@ -59,6 +61,8 @@ import logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
"""
"""
Run evaluation program, return program outputs.
Run evaluation program, return program outputs.
...
@@ -71,8 +75,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
...
@@ -71,8 +75,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
has_bbox
=
'bbox'
in
keys
has_bbox
=
'bbox'
in
keys
for
data
in
reader
():
for
data
in
reader
():
data
=
test_feed
.
feed
(
data
)
data
=
test_feed
.
feed
(
data
)
feed_data
=
{
'image'
:
data
[
'image'
],
feed_data
=
{
'image'
:
data
[
'image'
],
'im_size'
:
data
[
'im_size'
]}
'im_size'
:
data
[
'im_size'
]}
outs
=
exe
.
run
(
compile_program
,
outs
=
exe
.
run
(
compile_program
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
values
[
0
],
fetch_list
=
values
[
0
],
...
@@ -123,7 +126,6 @@ def main():
...
@@ -123,7 +126,6 @@ def main():
devices_num
=
int
(
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'eval_feed'
not
in
cfg
:
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
else
:
...
@@ -135,39 +137,36 @@ def main():
...
@@ -135,39 +137,36 @@ def main():
_
,
test_feed_vars
=
create_feed
(
eval_feed
,
iterable
=
True
)
_
,
test_feed_vars
=
create_feed
(
eval_feed
,
iterable
=
True
)
eval_reader
=
create_reader
(
eval_feed
,
args_path
=
FLAGS
.
dataset_dir
)
eval_reader
=
create_reader
(
eval_feed
,
args_path
=
FLAGS
.
dataset_dir
)
#eval_pyreader.decorate_sample_list_generator(eval_reader, place)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
assert
os
.
path
.
exists
(
FLAGS
.
model_path
)
assert
os
.
path
.
exists
(
FLAGS
.
model_path
)
infer_prog
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
infer_prog
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
dirname
=
FLAGS
.
model_path
,
executor
=
exe
,
dirname
=
FLAGS
.
model_path
,
model_filename
=
FLAGS
.
model_name
,
executor
=
exe
,
params_filename
=
FLAGS
.
params_name
)
model_filename
=
FLAGS
.
model_name
,
params_filename
=
FLAGS
.
params_name
)
eval_keys
=
[
'bbox'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_keys
=
[
'bbox'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_values
=
[
'multiclass_nms_0.tmp_0'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_values
=
[
'multiclass_nms_0.tmp_0'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_cls
=
[]
eval_cls
=
[]
eval_values
[
0
]
=
fetch_targets
[
0
]
eval_values
[
0
]
=
fetch_targets
[
0
]
results
=
eval_run
(
exe
,
infer_prog
,
eval_reader
,
results
=
eval_run
(
exe
,
infer_prog
,
eval_reader
,
eval_keys
,
eval_values
,
eval_keys
,
eval_values
,
eval_cls
,
test_data_feed
)
eval_cls
,
test_data_feed
)
resolution
=
None
resolution
=
None
if
'mask'
in
results
[
0
]:
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
resolution
=
model
.
mask_head
.
resolution
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
resolution
,
False
,
FLAGS
.
output_eval
)
False
,
FLAGS
.
output_eval
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
=
ArgsParser
()
parser
.
add_argument
(
parser
.
add_argument
(
"-m"
,
"-m"
,
"--model_path"
,
default
=
None
,
type
=
str
,
help
=
"path of checkpoint"
)
"--model_path"
,
default
=
None
,
type
=
str
,
help
=
"path of checkpoint"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--output_eval"
,
"--output_eval"
,
default
=
None
,
default
=
None
,
...
...
PaddleCV/PaddleDetection/slim/infer.py
浏览文件 @
c2d68974
...
@@ -25,6 +25,7 @@ import numpy as np
...
@@ -25,6 +25,7 @@ import numpy as np
from
PIL
import
Image
from
PIL
import
Image
sys
.
path
.
append
(
"../../"
)
sys
.
path
.
append
(
"../../"
)
def
set_paddle_flags
(
**
kwargs
):
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
...
@@ -118,20 +119,19 @@ def main():
...
@@ -118,20 +119,19 @@ def main():
test_images
=
get_test_images
(
FLAGS
.
infer_dir
,
FLAGS
.
infer_img
)
test_images
=
get_test_images
(
FLAGS
.
infer_dir
,
FLAGS
.
infer_img
)
test_feed
.
dataset
.
add_images
(
test_images
)
test_feed
.
dataset
.
add_images
(
test_images
)
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
infer_prog
,
feed_var_names
,
fetch_list
=
fluid
.
io
.
load_inference_model
(
infer_prog
,
feed_var_names
,
fetch_list
=
fluid
.
io
.
load_inference_model
(
dirname
=
FLAGS
.
model_path
,
model_filename
=
FLAGS
.
model_name
,
dirname
=
FLAGS
.
model_path
,
params_filename
=
FLAGS
.
params_name
,
model_filename
=
FLAGS
.
model_name
,
executor
=
exe
)
params_filename
=
FLAGS
.
params_name
,
executor
=
exe
)
reader
=
create_reader
(
test_feed
)
reader
=
create_reader
(
test_feed
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_var_names
,
feeder
=
fluid
.
DataFeeder
(
program
=
infer_prog
)
place
=
place
,
feed_list
=
feed_var_names
,
program
=
infer_prog
)
# parse infer fetches
# parse infer fetches
assert
cfg
.
metric
in
[
'COCO'
,
'VOC'
],
\
assert
cfg
.
metric
in
[
'COCO'
,
'VOC'
],
\
...
@@ -141,7 +141,9 @@ def main():
...
@@ -141,7 +141,9 @@ def main():
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
extra_keys
=
[
'im_info'
,
'im_id'
,
'im_shape'
]
if
cfg
[
'metric'
]
==
'VOC'
:
if
cfg
[
'metric'
]
==
'VOC'
:
extra_keys
=
[
'im_id'
,
'im_shape'
]
extra_keys
=
[
'im_id'
,
'im_shape'
]
keys
,
values
,
_
=
parse_fetches
({
'bbox'
:
fetch_list
},
infer_prog
,
extra_keys
)
keys
,
values
,
_
=
parse_fetches
({
'bbox'
:
fetch_list
},
infer_prog
,
extra_keys
)
# parse dataset category
# parse dataset category
if
cfg
.
metric
==
'COCO'
:
if
cfg
.
metric
==
'COCO'
:
...
@@ -176,7 +178,7 @@ def main():
...
@@ -176,7 +178,7 @@ def main():
if
infer_time
:
if
infer_time
:
warmup_times
=
10
warmup_times
=
10
repeats_time
=
100
repeats_time
=
100
feed_data_dict
=
feeder
.
feed
(
feed_data
)
;
feed_data_dict
=
feeder
.
feed
(
feed_data
)
for
i
in
range
(
warmup_times
):
for
i
in
range
(
warmup_times
):
exe
.
run
(
compile_prog
,
exe
.
run
(
compile_prog
,
feed
=
feed_data_dict
,
feed
=
feed_data_dict
,
...
@@ -189,7 +191,8 @@ def main():
...
@@ -189,7 +191,8 @@ def main():
fetch_list
=
fetch_list
,
fetch_list
=
fetch_list
,
return_numpy
=
False
)
return_numpy
=
False
)
print
(
"infer time: {} ms/sample"
.
format
((
time
.
time
()
-
start_time
)
*
1000
/
repeats_time
))
print
(
"infer time: {} ms/sample"
.
format
((
time
.
time
()
-
start_time
)
*
1000
/
repeats_time
))
infer_time
=
False
infer_time
=
False
outs
=
exe
.
run
(
compile_prog
,
outs
=
exe
.
run
(
compile_prog
,
...
@@ -282,10 +285,7 @@ if __name__ == '__main__':
...
@@ -282,10 +285,7 @@ if __name__ == '__main__':
default
=
"tb_log_dir/image"
,
default
=
"tb_log_dir/image"
,
help
=
'Tensorboard logging directory for image.'
)
help
=
'Tensorboard logging directory for image.'
)
parser
.
add_argument
(
parser
.
add_argument
(
'--model_path'
,
'--model_path'
,
type
=
str
,
default
=
None
,
help
=
"inference model path"
)
type
=
str
,
default
=
None
,
help
=
"inference model path"
)
parser
.
add_argument
(
parser
.
add_argument
(
'--model_name'
,
'--model_name'
,
type
=
str
,
type
=
str
,
...
...
PaddleCV/PaddleDetection/slim/quantization/compress.py
浏览文件 @
c2d68974
...
@@ -28,11 +28,13 @@ from paddle.fluid.contrib.slim import Compressor
...
@@ -28,11 +28,13 @@ from paddle.fluid.contrib.slim import Compressor
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid.framework
import
IrGraph
from
paddle.fluid
import
core
from
paddle.fluid
import
core
def
set_paddle_flags
(
**
kwargs
):
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
set_paddle_flags
(
...
@@ -55,6 +57,8 @@ import logging
...
@@ -55,6 +57,8 @@ import logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
"""
"""
Run evaluation program, return program outputs.
Run evaluation program, return program outputs.
...
@@ -73,8 +77,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
...
@@ -73,8 +77,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
has_bbox
=
'bbox'
in
keys
has_bbox
=
'bbox'
in
keys
for
data
in
reader
():
for
data
in
reader
():
data
=
test_feed
.
feed
(
data
)
data
=
test_feed
.
feed
(
data
)
feed_data
=
{
'image'
:
data
[
'image'
],
feed_data
=
{
'image'
:
data
[
'image'
],
'im_size'
:
data
[
'im_size'
]}
'im_size'
:
data
[
'im_size'
]}
outs
=
exe
.
run
(
compile_program
,
outs
=
exe
.
run
(
compile_program
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
[
values
[
0
]],
fetch_list
=
[
values
[
0
]],
...
@@ -155,16 +158,14 @@ def main():
...
@@ -155,16 +158,14 @@ def main():
optimizer
=
optim_builder
(
lr
)
optimizer
=
optim_builder
(
lr
)
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
loss
)
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
,
FLAGS
.
dataset_dir
)
train_reader
=
create_reader
(
train_feed
,
cfg
.
max_iters
,
FLAGS
.
dataset_dir
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
train_loader
.
set_sample_list_generator
(
train_reader
,
place
)
# parse train fetches
# parse train fetches
train_keys
,
train_values
,
_
=
parse_fetches
(
train_fetches
)
train_keys
,
train_values
,
_
=
parse_fetches
(
train_fetches
)
train_values
.
append
(
lr
)
train_values
.
append
(
lr
)
train_fetch_list
=
[]
train_fetch_list
=
[]
for
k
,
v
in
zip
(
train_keys
,
train_values
):
for
k
,
v
in
zip
(
train_keys
,
train_values
):
train_fetch_list
.
append
((
k
,
v
))
train_fetch_list
.
append
((
k
,
v
))
print
(
"train_fetch_list: {}"
.
format
(
train_fetch_list
))
print
(
"train_fetch_list: {}"
.
format
(
train_fetch_list
))
...
@@ -188,18 +189,16 @@ def main():
...
@@ -188,18 +189,16 @@ def main():
if
cfg
.
metric
==
'VOC'
:
if
cfg
.
metric
==
'VOC'
:
extra_keys
=
[
'gt_box'
,
'gt_label'
,
'is_difficult'
]
extra_keys
=
[
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_keys
,
eval_values
,
eval_cls
=
parse_fetches
(
fetches
,
eval_prog
,
eval_keys
,
eval_values
,
eval_cls
=
parse_fetches
(
fetches
,
eval_prog
,
extra_keys
)
extra_keys
)
# print(eval_values)
# print(eval_values)
eval_fetch_list
=
[]
eval_fetch_list
=
[]
for
k
,
v
in
zip
(
eval_keys
,
eval_values
):
for
k
,
v
in
zip
(
eval_keys
,
eval_values
):
eval_fetch_list
.
append
((
k
,
v
))
eval_fetch_list
.
append
((
k
,
v
))
exe
.
run
(
startup_prog
)
exe
.
run
(
startup_prog
)
start_iter
=
0
start_iter
=
0
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
best_box_ap_list
=
[]
best_box_ap_list
=
[]
...
@@ -208,20 +207,20 @@ def main():
...
@@ -208,20 +207,20 @@ def main():
#place = fluid.CPUPlace()
#place = fluid.CPUPlace()
#exe = fluid.Executor(place)
#exe = fluid.Executor(place)
results
=
eval_run
(
exe
,
program
,
eval_reader
,
results
=
eval_run
(
exe
,
program
,
eval_reader
,
eval_keys
,
eval_values
,
eval_
keys
,
eval_values
,
eval_
cls
,
test_data_feed
)
eval_cls
,
test_data_feed
)
resolution
=
None
resolution
=
None
if
'mask'
in
results
[
0
]:
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
resolution
=
model
.
mask_head
.
resolution
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
resolution
,
False
,
FLAGS
.
output_eval
)
cfg
.
num_classes
,
resolution
,
False
,
FLAGS
.
output_eval
)
if
len
(
best_box_ap_list
)
==
0
:
if
len
(
best_box_ap_list
)
==
0
:
best_box_ap_list
.
append
(
box_ap_stats
[
0
])
best_box_ap_list
.
append
(
box_ap_stats
[
0
])
elif
box_ap_stats
[
0
]
>
best_box_ap_list
[
0
]:
elif
box_ap_stats
[
0
]
>
best_box_ap_list
[
0
]:
best_box_ap_list
[
0
]
=
box_ap_stats
[
0
]
best_box_ap_list
[
0
]
=
box_ap_stats
[
0
]
logger
.
info
(
"Best test box ap: {}"
.
format
(
logger
.
info
(
"Best test box ap: {}"
.
format
(
best_box_ap_list
[
0
]))
best_box_ap_list
[
0
]))
return
best_box_ap_list
[
0
]
return
best_box_ap_list
[
0
]
test_feed
=
[(
'image'
,
test_feed_vars
[
'image'
].
name
),
test_feed
=
[(
'image'
,
test_feed_vars
[
'image'
].
name
),
...
@@ -239,13 +238,12 @@ def main():
...
@@ -239,13 +238,12 @@ def main():
eval_feed_list
=
test_feed
,
eval_feed_list
=
test_feed
,
eval_func
=
{
'map'
:
eval_func
},
eval_func
=
{
'map'
:
eval_func
},
eval_fetch_list
=
[
eval_fetch_list
[
0
]],
eval_fetch_list
=
[
eval_fetch_list
[
0
]],
prune_infer_model
=
[[
"image"
,
"im_size"
],[
"multiclass_nms_0.tmp_0"
]],
prune_infer_model
=
[[
"image"
,
"im_size"
],
[
"multiclass_nms_0.tmp_0"
]],
train_optimizer
=
None
)
train_optimizer
=
None
)
com
.
config
(
FLAGS
.
slim_file
)
com
.
config
(
FLAGS
.
slim_file
)
com
.
run
()
com
.
run
()
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
=
ArgsParser
()
parser
.
add_argument
(
parser
.
add_argument
(
...
...
PaddleCV/PaddleDetection/slim/quantization/freeze.py
浏览文件 @
c2d68974
...
@@ -32,11 +32,13 @@ from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
...
@@ -32,11 +32,13 @@ from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
ConvertToInt8Pass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
from
paddle.fluid.contrib.slim.quantization
import
TransformForMobilePass
def
set_paddle_flags
(
**
kwargs
):
def
set_paddle_flags
(
**
kwargs
):
for
key
,
value
in
kwargs
.
items
():
for
key
,
value
in
kwargs
.
items
():
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
if
os
.
environ
.
get
(
key
,
None
)
is
None
:
os
.
environ
[
key
]
=
str
(
value
)
os
.
environ
[
key
]
=
str
(
value
)
# NOTE(paddle-dev): All of these flags should be set before
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags
(
set_paddle_flags
(
...
@@ -59,6 +61,8 @@ import logging
...
@@ -59,6 +61,8 @@ import logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
logger
=
logging
.
getLogger
(
__name__
)
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
def
eval_run
(
exe
,
compile_program
,
reader
,
keys
,
values
,
cls
,
test_feed
):
"""
"""
Run evaluation program, return program outputs.
Run evaluation program, return program outputs.
...
@@ -71,8 +75,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
...
@@ -71,8 +75,7 @@ def eval_run(exe, compile_program, reader, keys, values, cls, test_feed):
has_bbox
=
'bbox'
in
keys
has_bbox
=
'bbox'
in
keys
for
data
in
reader
():
for
data
in
reader
():
data
=
test_feed
.
feed
(
data
)
data
=
test_feed
.
feed
(
data
)
feed_data
=
{
'image'
:
data
[
'image'
],
feed_data
=
{
'image'
:
data
[
'image'
],
'im_size'
:
data
[
'im_size'
]}
'im_size'
:
data
[
'im_size'
]}
outs
=
exe
.
run
(
compile_program
,
outs
=
exe
.
run
(
compile_program
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
values
[
0
],
fetch_list
=
values
[
0
],
...
@@ -123,7 +126,6 @@ def main():
...
@@ -123,7 +126,6 @@ def main():
devices_num
=
int
(
devices_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
if
'eval_feed'
not
in
cfg
:
if
'eval_feed'
not
in
cfg
:
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
eval_feed
=
create
(
main_arch
+
'EvalFeed'
)
else
:
else
:
...
@@ -138,85 +140,78 @@ def main():
...
@@ -138,85 +140,78 @@ def main():
#eval_pyreader.decorate_sample_list_generator(eval_reader, place)
#eval_pyreader.decorate_sample_list_generator(eval_reader, place)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
test_data_feed
=
fluid
.
DataFeeder
(
test_feed_vars
.
values
(),
place
)
assert
os
.
path
.
exists
(
FLAGS
.
model_path
)
assert
os
.
path
.
exists
(
FLAGS
.
model_path
)
infer_prog
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
infer_prog
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
dirname
=
FLAGS
.
model_path
,
executor
=
exe
,
dirname
=
FLAGS
.
model_path
,
model_filename
=
'__model__.infer'
,
executor
=
exe
,
params_filename
=
'__params__'
)
model_filename
=
'__model__.infer'
,
params_filename
=
'__params__'
)
eval_keys
=
[
'bbox'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_keys
=
[
'bbox'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_values
=
[
'multiclass_nms_0.tmp_0'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_values
=
[
'multiclass_nms_0.tmp_0'
,
'gt_box'
,
'gt_label'
,
'is_difficult'
]
eval_cls
=
[]
eval_cls
=
[]
eval_values
[
0
]
=
fetch_targets
[
0
]
eval_values
[
0
]
=
fetch_targets
[
0
]
results
=
eval_run
(
exe
,
infer_prog
,
eval_reader
,
results
=
eval_run
(
exe
,
infer_prog
,
eval_reader
,
eval_keys
,
eval_values
,
eval_keys
,
eval_values
,
eval_cls
,
test_data_feed
)
eval_cls
,
test_data_feed
)
resolution
=
None
resolution
=
None
if
'mask'
in
results
[
0
]:
if
'mask'
in
results
[
0
]:
resolution
=
model
.
mask_head
.
resolution
resolution
=
model
.
mask_head
.
resolution
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
box_ap_stats
=
eval_results
(
results
,
eval_feed
,
cfg
.
metric
,
cfg
.
num_classes
,
resolution
,
False
,
FLAGS
.
output_eval
)
resolution
,
False
,
FLAGS
.
output_eval
)
logger
.
info
(
"freeze the graph for inference"
)
logger
.
info
(
"freeze the graph for inference"
)
test_graph
=
IrGraph
(
core
.
Graph
(
infer_prog
.
desc
),
for_test
=
True
)
test_graph
=
IrGraph
(
core
.
Graph
(
infer_prog
.
desc
),
for_test
=
True
)
freeze_pass
=
QuantizationFreezePass
(
freeze_pass
=
QuantizationFreezePass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
,
place
=
place
,
weight_quantize_type
=
FLAGS
.
weight_quant_type
)
weight_quantize_type
=
FLAGS
.
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
freeze_pass
.
apply
(
test_graph
)
server_program
=
test_graph
.
to_program
()
server_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'float'
),
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'float'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_program
,
main_program
=
server_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
logger
.
info
(
"convert the weights into int8 type"
)
logger
.
info
(
"convert the weights into int8 type"
)
convert_int8_pass
=
ConvertToInt8Pass
(
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
)
place
=
place
)
convert_int8_pass
.
apply
(
test_graph
)
convert_int8_pass
.
apply
(
test_graph
)
server_int8_program
=
test_graph
.
to_program
()
server_int8_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'int8'
),
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'int8'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_int8_program
,
main_program
=
server_int8_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
mobile_pass
=
TransformForMobilePass
()
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
mobile_pass
.
apply
(
test_graph
)
mobile_program
=
test_graph
.
to_program
()
mobile_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'mobile'
),
dirname
=
os
.
path
.
join
(
FLAGS
.
save_path
,
'mobile'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
mobile_program
,
main_program
=
mobile_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
=
ArgsParser
()
parser
.
add_argument
(
parser
.
add_argument
(
"-m"
,
"-m"
,
"--model_path"
,
default
=
None
,
type
=
str
,
help
=
"path of checkpoint"
)
"--model_path"
,
default
=
None
,
type
=
str
,
help
=
"path of checkpoint"
)
parser
.
add_argument
(
parser
.
add_argument
(
"--output_eval"
,
"--output_eval"
,
default
=
None
,
default
=
None
,
...
...
PaddleSlim/classification/eval.py
浏览文件 @
c2d68974
...
@@ -33,22 +33,24 @@ add_arg('model_name', str, "__model__", "model filename for inference model")
...
@@ -33,22 +33,24 @@ add_arg('model_name', str, "__model__", "model filename for inference model")
add_arg
(
'params_name'
,
str
,
"__params__"
,
"params filename for inference model"
)
add_arg
(
'params_name'
,
str
,
"__params__"
,
"params filename for inference model"
)
# yapf: enable
# yapf: enable
def
eval
(
args
):
def
eval
(
args
):
# parameters from arguments
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
val_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
val_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
exe
,
args
.
model_path
,
model_filename
=
args
.
model_name
,
exe
,
params_filename
=
args
.
params_name
)
model_filename
=
args
.
model_name
,
params_filename
=
args
.
params_name
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
val_program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
val_program
)
results
=
[]
results
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
for
batch_id
,
data
in
enumerate
(
val_reader
()):
# top1_acc, top5_acc
# top1_acc, top5_acc
if
len
(
feed_target_names
)
==
1
:
if
len
(
feed_target_names
)
==
1
:
# eval "infer model", which input is image, output is classification probability
# eval "infer model", which input is image, output is classification probability
...
@@ -56,8 +58,8 @@ def eval(args):
...
@@ -56,8 +58,8 @@ def eval(args):
label
=
[[
d
[
1
]]
for
d
in
data
]
label
=
[[
d
[
1
]]
for
d
in
data
]
feed_data
=
feeder
.
feed
(
image
)
feed_data
=
feeder
.
feed
(
image
)
pred
=
exe
.
run
(
val_program
,
pred
=
exe
.
run
(
val_program
,
feed
=
feed_data
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
pred
=
np
.
array
(
pred
[
0
])
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
...
@@ -73,18 +75,20 @@ def eval(args):
...
@@ -73,18 +75,20 @@ def eval(args):
else
:
else
:
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
# eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
result
=
exe
.
run
(
val_program
,
result
=
exe
.
run
(
val_program
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
result
=
[
np
.
mean
(
r
)
for
r
in
result
]
results
.
append
(
result
)
results
.
append
(
result
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
eval
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
PaddleSlim/classification/infer.py
浏览文件 @
c2d68974
...
@@ -34,20 +34,24 @@ add_arg('model_name', str, "__model__.infer", "inference model filename")
...
@@ -34,20 +34,24 @@ add_arg('model_name', str, "__model__.infer", "inference model filename")
add_arg
(
'params_name'
,
str
,
"__params__"
,
"inference model params filename"
)
add_arg
(
'params_name'
,
str
,
"__params__"
,
"inference model params filename"
)
# yapf: enable
# yapf: enable
def
infer
(
args
):
def
infer
(
args
):
# parameters from arguments
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
test_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
test_program
,
feed_target_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
exe
,
args
.
model_path
,
model_filename
=
args
.
model_name
,
exe
,
params_filename
=
args
.
params_name
)
model_filename
=
args
.
model_name
,
params_filename
=
args
.
params_name
)
test_reader
=
paddle
.
batch
(
reader
.
test
(),
batch_size
=
1
)
test_reader
=
paddle
.
batch
(
reader
.
test
(),
batch_size
=
1
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
test_program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_target_names
,
program
=
test_program
)
results
=
[]
results
=
[]
#for infer time, if you don't need, please change infer_time to False
#for infer time, if you don't need, please change infer_time to False
infer_time
=
True
infer_time
=
True
compile_prog
=
fluid
.
compiler
.
CompiledProgram
(
test_program
)
compile_prog
=
fluid
.
compiler
.
CompiledProgram
(
test_program
)
...
@@ -58,28 +62,27 @@ def infer(args):
...
@@ -58,28 +62,27 @@ def infer(args):
repeats_time
=
100
repeats_time
=
100
feed_data
=
feeder
.
feed
(
data
)
feed_data
=
feeder
.
feed
(
data
)
for
i
in
range
(
warmup_times
):
for
i
in
range
(
warmup_times
):
exe
.
run
(
compile_prog
,
exe
.
run
(
compile_prog
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
start_time
=
time
.
time
()
start_time
=
time
.
time
()
for
i
in
range
(
repeats_time
):
for
i
in
range
(
repeats_time
):
exe
.
run
(
compile_prog
,
exe
.
run
(
compile_prog
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
feed
=
feed_data
,
print
(
"infer time: {} ms/sample"
.
format
((
time
.
time
()
-
start_time
)
*
fetch_list
=
fetch_targets
)
1000
/
repeats_time
))
print
(
"infer time: {} ms/sample"
.
format
((
time
.
time
()
-
start_time
)
*
1000
/
repeats_time
))
infer_time
=
False
infer_time
=
False
# top1_acc, top5_acc
# top1_acc, top5_acc
result
=
exe
.
run
(
compile_prog
,
result
=
exe
.
run
(
compile_prog
,
feed
=
feeder
.
feed
(
data
),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
fetch_targets
)
fetch_list
=
fetch_targets
)
result
=
np
.
array
(
result
[
0
])
result
=
np
.
array
(
result
[
0
])
print
(
result
.
argsort
(
axis
=
1
)[:,
-
1
:][::
-
1
])
print
(
result
.
argsort
(
axis
=
1
)[:,
-
1
:][::
-
1
])
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
infer
(
args
)
infer
(
args
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
PaddleSlim/classification/quantization/compress.py
浏览文件 @
c2d68974
...
@@ -38,7 +38,8 @@ def compress(args):
...
@@ -38,7 +38,8 @@ def compress(args):
image_shape
=
"3,224,224"
image_shape
=
"3,224,224"
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
image_shape
=
[
int
(
m
)
for
m
in
image_shape
.
split
(
","
)]
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
None
]
+
image_shape
,
dtype
=
'float32'
)
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
[
None
]
+
image_shape
,
dtype
=
'float32'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
# model definition
# model definition
model
=
models
.
__dict__
[
args
.
model
]()
model
=
models
.
__dict__
[
args
.
model
]()
...
@@ -99,6 +100,7 @@ def compress(args):
...
@@ -99,6 +100,7 @@ def compress(args):
distiller_optimizer
=
None
)
distiller_optimizer
=
None
)
com_pass
.
config
(
args
.
config_file
)
com_pass
.
config
(
args
.
config_file
)
com_pass
.
run
()
com_pass
.
run
()
conv_op_num
=
0
conv_op_num
=
0
fake_quant_op_num
=
0
fake_quant_op_num
=
0
for
op
in
com_pass
.
context
.
eval_graph
.
ops
():
for
op
in
com_pass
.
context
.
eval_graph
.
ops
():
...
@@ -110,7 +112,6 @@ def compress(args):
...
@@ -110,7 +112,6 @@ def compress(args):
print
(
'fake quant op num {}'
.
format
(
fake_quant_op_num
))
print
(
'fake quant op num {}'
.
format
(
fake_quant_op_num
))
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
...
...
PaddleSlim/classification/quantization/freeze.py
浏览文件 @
c2d68974
...
@@ -45,27 +45,28 @@ add_arg('save_path', str, './output', 'Path to save inference model')
...
@@ -45,27 +45,28 @@ add_arg('save_path', str, './output', 'Path to save inference model')
add_arg
(
'weight_quant_type'
,
str
,
'abs_max'
,
'quantization type for weight'
)
add_arg
(
'weight_quant_type'
,
str
,
'abs_max'
,
'quantization type for weight'
)
# yapf: enable
# yapf: enable
def
eval
(
args
):
def
eval
(
args
):
# parameters from arguments
# parameters from arguments
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
=
fluid
.
Executor
(
place
)
val_program
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
args
.
model_path
,
val_program
,
feed_names
,
fetch_targets
=
fluid
.
io
.
load_inference_model
(
exe
,
args
.
model_path
,
model_filename
=
"__model__.infer"
,
exe
,
params_filename
=
"__params__"
)
model_filename
=
"__model__.infer"
,
params_filename
=
"__params__"
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
val_reader
=
paddle
.
batch
(
reader
.
val
(),
batch_size
=
128
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_names
,
program
=
val_program
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
feed_names
,
program
=
val_program
)
results
=
[]
results
=
[]
for
batch_id
,
data
in
enumerate
(
val_reader
()):
for
batch_id
,
data
in
enumerate
(
val_reader
()):
image
=
[[
d
[
0
]]
for
d
in
data
]
image
=
[[
d
[
0
]]
for
d
in
data
]
label
=
[[
d
[
1
]]
for
d
in
data
]
label
=
[[
d
[
1
]]
for
d
in
data
]
feed_data
=
feeder
.
feed
(
image
)
feed_data
=
feeder
.
feed
(
image
)
pred
=
exe
.
run
(
val_program
,
pred
=
exe
.
run
(
val_program
,
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
feed
=
feed_data
,
fetch_list
=
fetch_targets
)
pred
=
np
.
array
(
pred
[
0
])
pred
=
np
.
array
(
pred
[
0
])
label
=
np
.
array
(
label
)
label
=
np
.
array
(
label
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
sort_array
=
pred
.
argsort
(
axis
=
1
)
...
@@ -82,56 +83,58 @@ def eval(args):
...
@@ -82,56 +83,58 @@ def eval(args):
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
result
=
np
.
mean
(
np
.
array
(
results
),
axis
=
0
)
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
print
(
"top1_acc/top5_acc= {}"
.
format
(
result
))
sys
.
stdout
.
flush
()
sys
.
stdout
.
flush
()
_logger
.
info
(
"freeze the graph for inference"
)
_logger
.
info
(
"freeze the graph for inference"
)
test_graph
=
IrGraph
(
core
.
Graph
(
val_program
.
desc
),
for_test
=
True
)
test_graph
=
IrGraph
(
core
.
Graph
(
val_program
.
desc
),
for_test
=
True
)
freeze_pass
=
QuantizationFreezePass
(
freeze_pass
=
QuantizationFreezePass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
,
place
=
place
,
weight_quantize_type
=
args
.
weight_quant_type
)
weight_quantize_type
=
args
.
weight_quant_type
)
freeze_pass
.
apply
(
test_graph
)
freeze_pass
.
apply
(
test_graph
)
server_program
=
test_graph
.
to_program
()
server_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'float'
),
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'float'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_program
,
main_program
=
server_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
_logger
.
info
(
"convert the weights into int8 type"
)
_logger
.
info
(
"convert the weights into int8 type"
)
convert_int8_pass
=
ConvertToInt8Pass
(
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
fluid
.
global_scope
(),
scope
=
fluid
.
global_scope
(),
place
=
place
)
place
=
place
)
convert_int8_pass
.
apply
(
test_graph
)
convert_int8_pass
.
apply
(
test_graph
)
server_int8_program
=
test_graph
.
to_program
()
server_int8_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'int8'
),
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'int8'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
server_int8_program
,
main_program
=
server_int8_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
_logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
_logger
.
info
(
"convert the freezed pass to paddle-lite execution"
)
mobile_pass
=
TransformForMobilePass
()
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
mobile_pass
.
apply
(
test_graph
)
mobile_program
=
test_graph
.
to_program
()
mobile_program
=
test_graph
.
to_program
()
fluid
.
io
.
save_inference_model
(
fluid
.
io
.
save_inference_model
(
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'mobile'
),
dirname
=
os
.
path
.
join
(
args
.
save_path
,
'mobile'
),
feeded_var_names
=
feed_names
,
feeded_var_names
=
feed_names
,
target_vars
=
fetch_targets
,
target_vars
=
fetch_targets
,
executor
=
exe
,
executor
=
exe
,
main_program
=
mobile_program
,
main_program
=
mobile_program
,
model_filename
=
'model'
,
model_filename
=
'model'
,
params_filename
=
'weights'
)
params_filename
=
'weights'
)
def
main
():
def
main
():
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
print_arguments
(
args
)
print_arguments
(
args
)
eval
(
args
)
eval
(
args
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
main
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录