Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c2b7ec5d
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c2b7ec5d
编写于
8月 28, 2019
作者:
L
LordAaron
提交者:
wangguanzhong
8月 28, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cascade-mask-fpn add (#3200)
* cascade-mask-fpn add
上级
8c6711c8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
403 addition
and
0 deletion
+403
-0
PaddleCV/PaddleDetection/configs/cascade_mask_rcnn_r50_fpn_1x.yml
.../PaddleDetection/configs/cascade_mask_rcnn_r50_fpn_1x.yml
+145
-0
PaddleCV/PaddleDetection/ppdet/modeling/architectures/__init__.py
.../PaddleDetection/ppdet/modeling/architectures/__init__.py
+2
-0
PaddleCV/PaddleDetection/ppdet/modeling/architectures/cascade_mask_rcnn.py
...tection/ppdet/modeling/architectures/cascade_mask_rcnn.py
+256
-0
未找到文件。
PaddleCV/PaddleDetection/configs/cascade_mask_rcnn_r50_fpn_1x.yml
0 → 100644
浏览文件 @
c2b7ec5d
architecture
:
CascadeMaskRCNN
train_feed
:
MaskRCNNTrainFeed
eval_feed
:
MaskRCNNEvalFeed
test_feed
:
MaskRCNNTestFeed
use_gpu
:
true
max_iters
:
180000
snapshot_iter
:
10000
log_smooth_window
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric
:
COCO
weights
:
output/cascade_mask_rcnn_r50_fpn_1x/model_final/
num_classes
:
81
CascadeMaskRCNN
:
backbone
:
ResNet
fpn
:
FPN
rpn_head
:
FPNRPNHead
roi_extractor
:
FPNRoIAlign
bbox_head
:
CascadeBBoxHead
bbox_assigner
:
CascadeBBoxAssigner
mask_assigner
:
MaskAssigner
mask_head
:
MaskHead
ResNet
:
depth
:
50
feature_maps
:
[
2
,
3
,
4
,
5
]
freeze_at
:
2
norm_type
:
affine_channel
FPN
:
max_level
:
6
min_level
:
2
num_chan
:
256
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
,
0.25
]
FPNRPNHead
:
anchor_generator
:
aspect_ratios
:
[
0.5
,
1.0
,
2.0
]
variance
:
[
1.0
,
1.0
,
1.0
,
1.0
]
anchor_start_size
:
32
max_level
:
6
min_level
:
2
num_chan
:
256
rpn_target_assign
:
rpn_batch_size_per_im
:
256
rpn_fg_fraction
:
0.5
rpn_negative_overlap
:
0.3
rpn_positive_overlap
:
0.7
rpn_straddle_thresh
:
0.0
train_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
2000
post_nms_top_n
:
2000
test_proposal
:
min_size
:
0.0
nms_thresh
:
0.7
pre_nms_top_n
:
1000
post_nms_top_n
:
1000
FPNRoIAlign
:
canconical_level
:
4
canonical_size
:
224
max_level
:
5
min_level
:
2
sampling_ratio
:
2
box_resolution
:
7
mask_resolution
:
14
MaskHead
:
dilation
:
1
conv_dim
:
256
num_convs
:
4
resolution
:
28
CascadeBBoxAssigner
:
batch_size_per_im
:
512
bbox_reg_weights
:
[
10
,
20
,
30
]
bg_thresh_hi
:
[
0.5
,
0.6
,
0.7
]
bg_thresh_lo
:
[
0.0
,
0.0
,
0.0
]
fg_fraction
:
0.25
fg_thresh
:
[
0.5
,
0.6
,
0.7
]
MaskAssigner
:
resolution
:
28
CascadeBBoxHead
:
head
:
FC6FC7Head
nms
:
keep_top_k
:
100
nms_threshold
:
0.5
score_threshold
:
0.05
FC6FC7Head
:
num_chan
:
1024
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
120000
,
160000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
MaskRCNNTrainFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_train2017.json
image_dir
:
train2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
MaskRCNNEvalFeed
:
batch_size
:
1
dataset
:
dataset_dir
:
dataset/coco
annotation
:
annotations/instances_val2017.json
image_dir
:
val2017
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
MaskRCNNTestFeed
:
batch_size
:
1
dataset
:
annotation
:
dataset/coco/annotations/instances_val2017.json
batch_transforms
:
-
!PadBatch
pad_to_stride
:
32
num_workers
:
2
PaddleCV/PaddleDetection/ppdet/modeling/architectures/__init__.py
浏览文件 @
c2b7ec5d
...
...
@@ -17,6 +17,7 @@ from __future__ import absolute_import
from
.
import
faster_rcnn
from
.
import
mask_rcnn
from
.
import
cascade_rcnn
from
.
import
cascade_mask_rcnn
from
.
import
yolov3
from
.
import
ssd
from
.
import
retinanet
...
...
@@ -24,6 +25,7 @@ from . import retinanet
from
.faster_rcnn
import
*
from
.mask_rcnn
import
*
from
.cascade_rcnn
import
*
from
.cascade_mask_rcnn
import
*
from
.yolov3
import
*
from
.ssd
import
*
from
.retinanet
import
*
PaddleCV/PaddleDetection/ppdet/modeling/architectures/cascade_mask_rcnn.py
0 → 100644
浏览文件 @
c2b7ec5d
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
ppdet.core.workspace
import
register
__all__
=
[
'CascadeMaskRCNN'
]
@
register
class
CascadeMaskRCNN
(
object
):
"""
Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1712.00726
Args:
backbone (object): backbone instance
rpn_head (object): `RPNhead` instance
bbox_assigner (object): `BBoxAssigner` instance
roi_extractor (object): ROI extractor instance
bbox_head (object): `BBoxHead` instance
mask_assigner (object): `MaskAssigner` instance
mask_head (object): `MaskHead` instance
fpn (object): feature pyramid network instance
"""
__category__
=
'architecture'
__inject__
=
[
'backbone'
,
'rpn_head'
,
'bbox_assigner'
,
'roi_extractor'
,
'bbox_head'
,
'mask_assigner'
,
'mask_head'
,
'fpn'
]
def
__init__
(
self
,
backbone
,
rpn_head
,
roi_extractor
=
'FPNRoIAlign'
,
bbox_head
=
'CascadeBBoxHead'
,
bbox_assigner
=
'CascadeBBoxAssigner'
,
mask_assigner
=
'MaskAssigner'
,
mask_head
=
'MaskHead'
,
fpn
=
'FPN'
):
super
(
CascadeMaskRCNN
,
self
).
__init__
()
assert
fpn
is
not
None
,
"cascade RCNN requires FPN"
self
.
backbone
=
backbone
self
.
fpn
=
fpn
self
.
rpn_head
=
rpn_head
self
.
bbox_assigner
=
bbox_assigner
self
.
roi_extractor
=
roi_extractor
self
.
bbox_head
=
bbox_head
self
.
mask_assigner
=
mask_assigner
self
.
mask_head
=
mask_head
# Cascade local cfg
self
.
cls_agnostic_bbox_reg
=
2
(
brw0
,
brw1
,
brw2
)
=
self
.
bbox_assigner
.
bbox_reg_weights
self
.
cascade_bbox_reg_weights
=
[
[
1.
/
brw0
,
1.
/
brw0
,
2.
/
brw0
,
2.
/
brw0
],
[
1.
/
brw1
,
1.
/
brw1
,
2.
/
brw1
,
2.
/
brw1
],
[
1.
/
brw2
,
1.
/
brw2
,
2.
/
brw2
,
2.
/
brw2
]
]
self
.
cascade_rcnn_loss_weight
=
[
1.0
,
0.5
,
0.25
]
def
build
(
self
,
feed_vars
,
mode
=
'train'
):
im
=
feed_vars
[
'image'
]
assert
mode
in
[
'train'
,
'test'
],
\
"only 'train' and 'test' mode is supported"
if
mode
==
'train'
:
required_fields
=
[
'gt_label'
,
'gt_box'
,
'gt_mask'
,
'is_crowd'
,
'im_info'
]
else
:
required_fields
=
[
'im_shape'
,
'im_info'
]
for
var
in
required_fields
:
assert
var
in
feed_vars
,
\
"{} has no {} field"
.
format
(
feed_vars
,
var
)
if
mode
==
'train'
:
gt_box
=
feed_vars
[
'gt_box'
]
is_crowd
=
feed_vars
[
'is_crowd'
]
im_info
=
feed_vars
[
'im_info'
]
# backbone
body_feats
=
self
.
backbone
(
im
)
# FPN
if
self
.
fpn
is
not
None
:
body_feats
,
spatial_scale
=
self
.
fpn
.
get_output
(
body_feats
)
# rpn proposals
rpn_rois
=
self
.
rpn_head
.
get_proposals
(
body_feats
,
im_info
,
mode
=
mode
)
if
mode
==
'train'
:
rpn_loss
=
self
.
rpn_head
.
get_loss
(
im_info
,
gt_box
,
is_crowd
)
else
:
if
self
.
rpn_only
:
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
rois
)
rois
=
rois
/
im_scale
return
{
'proposal'
:
rois
}
proposal_list
=
[]
roi_feat_list
=
[]
rcnn_pred_list
=
[]
rcnn_target_list
=
[]
proposals
=
None
bbox_pred
=
None
for
i
in
range
(
3
):
if
i
>
0
:
refined_bbox
=
self
.
_decode_box
(
proposals
,
bbox_pred
,
curr_stage
=
i
-
1
,
)
else
:
refined_bbox
=
rpn_rois
if
mode
==
'train'
:
outs
=
self
.
bbox_assigner
(
input_rois
=
refined_bbox
,
feed_vars
=
feed_vars
,
curr_stage
=
i
)
proposals
=
outs
[
0
]
rcnn_target_list
.
append
(
outs
)
else
:
proposals
=
refined_bbox
proposal_list
.
append
(
proposals
)
# extract roi features
roi_feat
=
self
.
roi_extractor
(
body_feats
,
proposals
,
spatial_scale
)
roi_feat_list
.
append
(
roi_feat
)
# bbox head
cls_score
,
bbox_pred
=
self
.
bbox_head
.
get_output
(
roi_feat
,
wb_scalar
=
1.0
/
self
.
cascade_rcnn_loss_weight
[
i
],
name
=
'_'
+
str
(
i
+
1
)
if
i
>
0
else
''
)
rcnn_pred_list
.
append
((
cls_score
,
bbox_pred
))
# get mask rois
rois
=
proposal_list
[
2
]
if
mode
==
'train'
:
loss
=
self
.
bbox_head
.
get_loss
(
rcnn_pred_list
,
rcnn_target_list
,
self
.
cascade_rcnn_loss_weight
)
loss
.
update
(
rpn_loss
)
labels_int32
=
rcnn_target_list
[
2
][
1
]
mask_rois
,
roi_has_mask_int32
,
mask_int32
=
self
.
mask_assigner
(
rois
=
rois
,
gt_classes
=
feed_vars
[
'gt_label'
],
is_crowd
=
feed_vars
[
'is_crowd'
],
gt_segms
=
feed_vars
[
'gt_mask'
],
im_info
=
feed_vars
[
'im_info'
],
labels_int32
=
labels_int32
)
if
self
.
fpn
is
None
:
bbox_head_feat
=
self
.
bbox_head
.
get_head_feat
()
feat
=
fluid
.
layers
.
gather
(
bbox_head_feat
,
roi_has_mask_int32
)
else
:
feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
is_mask
=
True
)
mask_loss
=
self
.
mask_head
.
get_loss
(
feat
,
mask_int32
)
loss
.
update
(
mask_loss
)
total_loss
=
fluid
.
layers
.
sum
(
list
(
loss
.
values
()))
loss
.
update
({
'loss'
:
total_loss
})
return
loss
else
:
if
self
.
fpn
is
None
:
last_feat
=
body_feats
[
list
(
body_feats
.
keys
())[
-
1
]]
roi_feat
=
self
.
roi_extractor
(
last_feat
,
rois
)
else
:
roi_feat
=
self
.
roi_extractor
(
body_feats
,
rois
,
spatial_scale
)
bbox_pred
=
self
.
bbox_head
.
get_prediction
(
im_info
,
roi_feat_list
,
rcnn_pred_list
,
proposal_list
,
self
.
cascade_bbox_reg_weights
,
self
.
cls_agnostic_bbox_reg
)
bbox_pred
=
bbox_pred
[
'bbox'
]
# share weight
bbox_shape
=
fluid
.
layers
.
shape
(
bbox_pred
)
bbox_size
=
fluid
.
layers
.
reduce_prod
(
bbox_shape
)
bbox_size
=
fluid
.
layers
.
reshape
(
bbox_size
,
[
1
,
1
])
size
=
fluid
.
layers
.
fill_constant
([
1
,
1
],
value
=
6
,
dtype
=
'int32'
)
cond
=
fluid
.
layers
.
less_than
(
x
=
bbox_size
,
y
=
size
)
mask_pred
=
fluid
.
layers
.
create_global_var
(
shape
=
[
1
],
value
=
0.0
,
dtype
=
'float32'
,
persistable
=
False
)
with
fluid
.
layers
.
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
cond
):
fluid
.
layers
.
assign
(
input
=
bbox_pred
,
output
=
mask_pred
)
with
switch
.
default
():
bbox
=
fluid
.
layers
.
slice
(
bbox_pred
,
[
1
],
starts
=
[
2
],
ends
=
[
6
])
im_scale
=
fluid
.
layers
.
slice
(
im_info
,
[
1
],
starts
=
[
2
],
ends
=
[
3
])
im_scale
=
fluid
.
layers
.
sequence_expand
(
im_scale
,
bbox
)
mask_rois
=
bbox
*
im_scale
if
self
.
fpn
is
None
:
mask_feat
=
self
.
roi_extractor
(
last_feat
,
mask_rois
)
mask_feat
=
self
.
bbox_head
.
get_head_feat
(
mask_feat
)
else
:
mask_feat
=
self
.
roi_extractor
(
body_feats
,
mask_rois
,
spatial_scale
,
is_mask
=
True
)
mask_out
=
self
.
mask_head
.
get_prediction
(
mask_feat
,
bbox
)
fluid
.
layers
.
assign
(
input
=
mask_out
,
output
=
mask_pred
)
return
{
'bbox'
:
bbox_pred
,
'mask'
:
mask_pred
}
def
_decode_box
(
self
,
proposals
,
bbox_pred
,
curr_stage
):
rcnn_loc_delta_r
=
fluid
.
layers
.
reshape
(
bbox_pred
,
(
-
1
,
self
.
cls_agnostic_bbox_reg
,
4
))
# only use fg box delta to decode box
rcnn_loc_delta_s
=
fluid
.
layers
.
slice
(
rcnn_loc_delta_r
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
refined_bbox
=
fluid
.
layers
.
box_coder
(
prior_box
=
proposals
,
prior_box_var
=
self
.
cascade_bbox_reg_weights
[
curr_stage
],
target_box
=
rcnn_loc_delta_s
,
code_type
=
'decode_center_size'
,
box_normalized
=
False
,
axis
=
1
,
)
refined_bbox
=
fluid
.
layers
.
reshape
(
refined_bbox
,
shape
=
[
-
1
,
4
])
return
refined_bbox
def
train
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'train'
)
def
eval
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'test'
)
def
test
(
self
,
feed_vars
):
return
self
.
build
(
feed_vars
,
'test'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录