未验证 提交 c2b24c87 编写于 作者: Q qingqing01 提交者: GitHub

Clean up PaddleCV code in release/1.7 (#4342)

* remove yolov3, ssd, rcnn and PaddleDetection.
* remove ICNet, deeplabv3+.
* remove Research
* remove empty folder.
上级 ac075199
# Virtualenv
/.venv/
/venv/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
# C extensions
*.so
# json file
*.json
# Distribution / packaging
/bin/
/build/
/develop-eggs/
/dist/
/eggs/
/lib/
/lib64/
/output/
/parts/
/sdist/
/var/
/*.egg-info/
/.installed.cfg
/*.egg
/.eggs
# AUTHORS and ChangeLog will be generated while packaging
/AUTHORS
/ChangeLog
# BCloud / BuildSubmitter
/build_submitter.*
/logger_client_log
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
.tox/
.coverage
.cache
.pytest_cache
nosetests.xml
coverage.xml
# Translations
*.mo
# Sphinx documentation
/docs/_build/
*.json
dataset/coco/annotations
dataset/coco/train2017
dataset/coco/val2017
dataset/voc/VOCdevkit
[style]
based_on_style = pep8
column_limit = 80
# **This project has been deprecated, please visit https://github.com/PaddlePaddle/PaddleDetection**</font> <br />
English | [简体中文](README_cn.md)
# PaddleDetection
The goal of PaddleDetection is to provide easy access to a wide range of object
detection models in both industry and research settings. We design
PaddleDetection to be not only performant, production-ready but also highly
flexible, catering to research needs.
<div align="center">
<img src="demo/output/000000570688.jpg" />
</div>
## Introduction
Features:
- Production Ready:
Key operations are implemented in C++ and CUDA, together with PaddlePaddle's
highly efficient inference engine, enables easy deployment in server environments.
- Highly Flexible:
Components are designed to be modular. Model architectures, as well as data
preprocess pipelines, can be easily customized with simple configuration
changes.
- Performance Optimized:
With the help of the underlying PaddlePaddle framework, faster training and
reduced GPU memory footprint is achieved. Notably, YOLOv3 training is
much faster compared to other frameworks. Another example is Mask-RCNN
(ResNet50), we managed to fit up to 4 images per GPU (Tesla V100 16GB) during
multi-GPU training.
Supported Architectures:
| | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | DarkNet | VGG |
| ------------------- | :----: | ----------------------------: | :--------: | :---: | :-------: | :-----: | :--: |
| Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Cascade Faster-RCNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| Cascade Mask-RCNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| YOLOv3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) models offer much improved accuracy with negligible performance cost.
Advanced Features:
- [x] **Synchronized Batch Norm**: currently used by YOLOv3.
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**
**NOTE:** Synchronized batch normalization can only be used on multiple GPU devices, can not be used on CPU devices or single GPU device.
## Get Started
- [Installation guide](docs/INSTALL.md)
- [Quick start on small dataset](docs/QUICK_STARTED.md)
- [Guide to traing, evaluate and arguments description](docs/GETTING_STARTED.md)
- [Guide to preprocess pipeline and custom dataset](docs/DATA.md)
- [Introduction to the configuration workflow](docs/CONFIG.md)
- [Examples for detailed configuration explanation](docs/config_example/)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [Transfer learning document](docs/TRANSFER_LEARNING.md)
## Model Zoo
- Pretrained models are available in the [PaddleDetection model zoo](docs/MODEL_ZOO.md).
- [Face detection models](configs/face_detection/README.md)
- [Pretrained models for pedestrian and vehicle detection](contrib/README.md)
## Model compression
- [ Quantification aware training example](slim/quantization)
- [ Pruning compression example](slim/prune)
## Depoly
- [Export model for inference depolyment](docs/EXPORT_MODEL.md)
- [C++ inference depolyment](inference/README.md)
## Benchmark
- [Inference benchmark](docs/BENCHMARK_INFER_cn.md)
## Updates
#### 10/2019
- Face detection models included: BlazeFace, Faceboxes.
- Enrich COCO models, box mAP up to 51.9%.
- Add CACacascade RCNN, one of the best single model of Objects365 2019 challenge Full Track champion.
- Add pretrained models for pedestrian and vehicle detection.
- Support mixed-precision training.
- Add C++ inference depolyment.
- Add model compression examples.
#### 2/9/2019
- Add retrained models for GroupNorm.
- Add Cascade-Mask-RCNN+FPN.
#### 5/8/2019
- Add a series of models ralated modulated Deformable Convolution.
#### 7/29/2019
- Update Chinese docs for PaddleDetection
- Fix bug in R-CNN models when train and test at the same time
- Add ResNext101-vd + Mask R-CNN + FPN models
- Add YOLOv3 on VOC models
#### 7/3/2019
- Initial release of PaddleDetection and detection model zoo
- Models included: Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, and SSD.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!
# **该项目已被迁移到 https://github.com/PaddlePaddle/PaddleDetection**
[English](README.md) | 简体中文
# PaddleDetection
PaddleDetection的目的是为工业界和学术界提供丰富、易用的目标检测模型。不仅性能优越、易于部署,而且能够灵活的满足算法研究的需求。
<div align="center">
<img src="demo/output/000000570688.jpg" />
</div>
## 简介
特性:
- 易部署:
PaddleDetection的模型中使用的核心算子均通过C++或CUDA实现,同时基于PaddlePaddle的高性能推理引擎可以方便地部署在多种硬件平台上。
- 高灵活度:
PaddleDetection通过模块化设计来解耦各个组件,基于配置文件可以轻松地搭建各种检测模型。
- 高性能:
基于PaddlePaddle框架的高性能内核,在模型训练速度、显存占用上有一定的优势。例如,YOLOv3的训练速度快于其他框架,在Tesla V100 16GB环境下,Mask-RCNN(ResNet50)可以单卡Batch Size可以达到4 (甚至到5)。
支持的模型结构:
| | ResNet | ResNet-vd <sup>[1](#vd)</sup> | ResNeXt-vd | SENet | MobileNet | DarkNet | VGG |
|--------------------|:------:|------------------------------:|:----------:|:-----:|:---------:|:-------:|:---:|
| Faster R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Faster R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN | ✓ | ✓ | x | ✓ | ✗ | ✗ | ✗ |
| Mask R-CNN + FPN | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ |
| Cascade Faster-CNN | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ |
| Cascade Mask-CNN | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| RetinaNet | ✓ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ |
| YOLOv3 | ✓ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ |
| SSD | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
<a name="vd">[1]</a> [ResNet-vd](https://arxiv.org/pdf/1812.01187) 模型提供了较大的精度提高和较少的性能损失。
扩展特性:
- [x] **Synchronized Batch Norm**: 目前在YOLOv3中使用。
- [x] **Group Norm**
- [x] **Modulated Deformable Convolution**
- [x] **Deformable PSRoI Pooling**
**注意:** Synchronized batch normalization 只能在多GPU环境下使用,不能在CPU环境或者单GPU环境下使用。
## 使用教程
- [安装说明](docs/INSTALL_cn.md)
- [快速开始](docs/QUICK_STARTED_cn.md)
- [训练、评估及参数说明](docs/GETTING_STARTED_cn.md)
- [数据预处理及自定义数据集](docs/DATA_cn.md)
- [配置模块设计和介绍](docs/CONFIG_cn.md)
- [详细的配置信息和参数说明示例](docs/config_example/)
- [IPython Notebook demo](demo/mask_rcnn_demo.ipynb)
- [迁移学习教程](docs/TRANSFER_LEARNING_cn.md)
## 模型库
- [模型库](docs/MODEL_ZOO_cn.md)
- [人脸检测模型](configs/face_detection/README.md)
- [行人检测和车辆检测预训练模型](contrib/README_cn.md)
## 模型压缩
- [量化训练压缩示例](slim/quantization)
- [剪枝压缩示例](slim/prune)
## 推理部署
- [模型导出教程](docs/EXPORT_MODEL.md)
- [C++推理部署](inference/README.md)
## Benchmark
- [推理Benchmark](docs/BENCHMARK_INFER_cn.md)
## 版本更新
### 10/2019
- 增加人脸检测模型BlazeFace、Faceboxes。
- 丰富基于COCO的模型,精度高达51.9%。
- 增加Objects365 2019 Challenge上夺冠的最佳单模型之一CACascade-RCNN。
- 增加行人检测和车辆检测预训练模型。
- 支持FP16训练。
- 增加跨平台的C++推理部署方案。
- 增加模型压缩示例。
### 2/9/2019
- 增加GroupNorm模型。
- 增加CascadeRCNN+Mask模型。
#### 5/8/2019
- 增加Modulated Deformable Convolution系列模型。
#### 7/22/2019
- 增加检测库中文文档
- 修复R-CNN系列模型训练同时进行评估的问题
- 新增ResNext101-vd + Mask R-CNN + FPN模型
- 新增基于VOC数据集的YOLOv3模型
#### 7/3/2019
- 首次发布PaddleDetection检测库和检测模型库
- 模型包括:Faster R-CNN, Mask R-CNN, Faster R-CNN+FPN, Mask
R-CNN+FPN, Cascade-Faster-RCNN+FPN, RetinaNet, YOLOv3, 和SSD.
## 如何贡献代码
我们非常欢迎你可以为PaddleDetection提供代码,也十分感谢你的反馈。
architecture: CascadeMaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/cascade_mask_rcnn_r50_fpn_1x/model_final/
num_classes: 81
CascadeMaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
mask_assigner: MaskAssigner
mask_head: MaskHead
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_hi: [0.5, 0.6, 0.7]
bg_thresh_lo: [0.0, 0.0, 0.0]
fg_fraction: 0.25
fg_thresh: [0.5, 0.6, 0.7]
MaskAssigner:
resolution: 28
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: CascadeRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_rcnn_r50_fpn_1x/model_final
metric: COCO
num_classes: 81
CascadeRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
variant: b
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: CascadeRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_rcnn_r50_fpn_1x/model_final
metric: COCO
num_classes: 81
CascadeRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
variant: b
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
MultiScaleTEST:
score_thresh: 0.05
nms_thresh: 0.5
detections_per_im: 100
enable_voting: true
vote_thresh: 0.9
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: true
- !NormalizeImage
is_channel_first: false
is_scale: true
mean:
- 0.485
- 0.456
- 0.406
std:
- 0.229
- 0.224
- 0.225
- !MultiscaleTestResize
origin_target_size: 800
origin_max_size: 1333
target_size:
- 400
- 500
- 600
- 700
- 900
- 1000
- 1100
- 1200
max_size: 2000
use_flip: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadMSTest
pad_to_stride: 32
num_scale: 18
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: CascadeMaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 300000
snapshot_iter: 10
use_gpu: true
log_iter: 20
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_caffe_pretrained.tar
weights: output/cascade_mask_rcnn_dcn_se154_vd_fpn_gn_s1x/model_final/
metric: COCO
num_classes: 81
CascadeMaskRCNN:
backbone: SENet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
mask_assigner: MaskAssigner
mask_head: MaskHead
SENet:
depth: 152
feature_maps: [2, 3, 4, 5]
freeze_at: 2
group_width: 4
groups: 64
norm_type: bn
freeze_norm: True
variant: d
dcn_v2_stages: [3, 4, 5]
std_senet: True
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
freeze_norm: False
norm_type: gn
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
norm_type: gn
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_hi: [0.5, 0.6, 0.7]
bg_thresh_lo: [0.0, 0.0, 0.0]
fg_fraction: 0.25
fg_thresh: [0.5, 0.6, 0.7]
MaskAssigner:
resolution: 28
CascadeBBoxHead:
head: CascadeXConvNormHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeXConvNormHead:
norm_type: gn
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 280000]
- !LinearWarmup
start_factor: 0.01
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
sample_transforms:
- !DecodeImage
to_rgb: False
with_mixup: False
- !RandomFlipImage
is_mask_flip: true
is_normalized: false
prob: 0.5
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !ResizeImage
interp: 1
target_size:
- 416
- 448
- 480
- 512
- 544
- 576
- 608
- 640
- 672
- 704
- 736
- 768
- 800
- 832
- 864
- 896
- 928
- 960
- 992
- 1024
- 1056
- 1088
- 1120
- 1152
- 1184
- 1216
- 1248
- 1280
- 1312
- 1344
- 1376
- 1408
max_size: 1600
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 8
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: False
with_mixup: False
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !ResizeImage
interp: 1
target_size:
- 800
max_size: 1333
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: False
with_mixup: False
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: CascadeMaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 300000
snapshot_iter: 10000
use_gpu: true
log_iter: 20
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_caffe_pretrained.tar
weights: output/cascade_mask_rcnn_dcn_se154_vd_fpn_gn_s1x/model_final/
metric: COCO
num_classes: 81
CascadeMaskRCNN:
backbone: SENet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
mask_assigner: MaskAssigner
mask_head: MaskHead
SENet:
depth: 152
feature_maps: [2, 3, 4, 5]
freeze_at: 2
group_width: 4
groups: 64
norm_type: bn
freeze_norm: True
variant: d
dcn_v2_stages: [3, 4, 5]
std_senet: True
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
freeze_norm: False
norm_type: gn
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
norm_type: gn
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_hi: [0.5, 0.6, 0.7]
bg_thresh_lo: [0.0, 0.0, 0.0]
fg_fraction: 0.25
fg_thresh: [0.5, 0.6, 0.7]
MaskAssigner:
resolution: 28
CascadeBBoxHead:
head: CascadeXConvNormHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeXConvNormHead:
norm_type: gn
MultiScaleTEST:
score_thresh: 0.05
nms_thresh: 0.5
detections_per_im: 100
enable_voting: true
vote_thresh: 0.9
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 280000]
- !LinearWarmup
start_factor: 0.01
steps: 2000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
sample_transforms:
- !DecodeImage
to_rgb: False
with_mixup: False
- !RandomFlipImage
is_mask_flip: true
is_normalized: false
prob: 0.5
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !ResizeImage
interp: 1
target_size:
- 416
- 448
- 480
- 512
- 544
- 576
- 608
- 640
- 672
- 704
- 736
- 768
- 800
- 832
- 864
- 896
- 928
- 960
- 992
- 1024
- 1056
- 1088
- 1120
- 1152
- 1184
- 1216
- 1248
- 1280
- 1312
- 1344
- 1376
- 1408
max_size: 1600
use_cv2: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 8
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
sample_transforms:
- !DecodeImage
to_rgb: False
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !MultiscaleTestResize
origin_target_size: 800
origin_max_size: 1333
target_size:
- 400
- 500
- 600
- 700
- 900
- 1000
- 1100
- 1200
max_size: 2000
use_flip: true
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadMSTest
pad_to_stride: 32
# num_scale = (len(target_size) + 1) * (1 + use_flip)
num_scale: 18
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: False
- !NormalizeImage
is_channel_first: false
is_scale: False
mean:
- 102.9801
- 115.9465
- 122.7717
std:
- 1.0
- 1.0
- 1.0
- !Permute
channel_first: true
to_bgr: false
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: CascadeRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/cascade_rcnn_dcn_r101_vd_fpn_1x/model_final
metric: COCO
num_classes: 81
CascadeRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNet:
norm_type: bn
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: CascadeRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_rcnn_dcn_r50_fpn_1x/model_final
metric: COCO
num_classes: 81
CascadeRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNet:
norm_type: bn
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
variant: b
dcn_v2_stages: [3, 4, 5]
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: CascadeRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x/model_final
metric: COCO
num_classes: 81
CascadeRCNN:
backbone: ResNeXt
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: CascadeBBoxHead
bbox_assigner: CascadeBBoxAssigner
ResNeXt:
norm_type: bn
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
group_width: 4
groups: 64
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
CascadeBBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [10, 20, 30]
bg_thresh_lo: [0.0, 0.0, 0.0]
bg_thresh_hi: [0.5, 0.6, 0.7]
fg_thresh: [0.5, 0.6, 0.7]
fg_fraction: 0.25
CascadeBBoxHead:
head: CascadeTwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
CascadeTwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_dcn_r101_vd_fpn_1x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 2
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/faster_rcnn_dcn_r50_fpn_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
norm_type: bn
feature_maps: [2, 3, 4, 5]
freeze_at: 2
dcn_v2_stages: [3, 4, 5]
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_lo: 0.0
bg_thresh_hi: 0.5
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_dcn_r50_vd_fpn_2x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 2
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNeXt
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNeXt:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
group_width: 4
groups: 64
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
shuffle: true
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
shuffle: false
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/mask_rcnn_dcn_r101_vd_fpn_1x/model_final
metric: COCO
num_classes: 81
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/mask_rcnn_dcn_r50_fpn_1x/model_final/
num_classes: 81
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
weights: output/mask_rcnn_dcn_r50_vd_fpn_2x/model_final/
num_classes: 81
MaskRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: MaskRCNN
train_feed: MaskRCNNTrainFeed
eval_feed: MaskRCNNEvalFeed
test_feed: MaskRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x/model_final
metric: COCO
num_classes: 81
MaskRCNN:
backbone: ResNeXt
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNeXt:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
group_width: 4
groups: 64
norm_type: bn
variant: d
dcn_v2_stages: [3, 4, 5]
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
aspect_ratios: [0.5, 1.0, 2.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
sampling_ratio: 2
box_resolution: 7
mask_resolution: 14
MaskHead:
dilation: 1
conv_dim: 256
num_convs: 4
resolution: 28
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
MaskAssigner:
resolution: 28
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
MaskRCNNTrainFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
MaskRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
English | [简体中文](README_cn.md)
# FaceDetection
The goal of FaceDetection is to provide efficient and high-speed face detection solutions,
including cutting-edge and classic models.
<div align="center">
<img src="../../demo/output/12_Group_Group_12_Group_Group_12_935.jpg" />
</div>
## Data Pipline
We use the [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/) to carry out the training
and testing of the model, the official website gives detailed data introduction.
- WIDER Face data source:
Loads `wider_face` type dataset with directory structures like this:
```
dataset/wider_face/
├── wider_face_split
│ ├── wider_face_train_bbx_gt.txt
│ ├── wider_face_val_bbx_gt.txt
├── WIDER_train
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_100.jpg
│ │ │ ├── 0_Parade_marchingband_1_381.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
├── WIDER_val
│ ├── images
│ │ ├── 0--Parade
│ │ │ ├── 0_Parade_marchingband_1_1004.jpg
│ │ │ ├── 0_Parade_marchingband_1_1045.jpg
│ │ │ │ ...
│ │ ├── 10--People_Marching
│ │ │ ...
```
- Download dataset manually:
To download the WIDER FACE dataset, run the following commands:
```
cd dataset/wider_face && ./download.sh
```
- Download dataset automatically:
If a training session is started but the dataset is not setup properly
(e.g, not found in dataset/wider_face), PaddleDetection can automatically
download them from [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/),
the decompressed datasets will be cached in ~/.cache/paddle/dataset/ and can be discovered
automatically subsequently.
### Data Augmentation
- **Data-anchor-sampling:** Randomly transform the scale of the image to a certain range of scales,
greatly enhancing the scale change of the face. The specific operation is to obtain $v=\sqrt{width * height}$
according to the randomly selected face height and width, and judge the value of `v` in which interval of
`[16,32,64,128]`. Assuming `v=45` && `32<v<64`, and any value of `[16,32,64]` is selected with a probability
of uniform distribution. If `64` is selected, the face's interval is selected in `[64 / 2, min(v * 2, 64 * 2)]`.
- **Other methods:** Including `RandomDistort`,`ExpandImage`,`RandomInterpImage`,`RandomFlipImage` etc.
Please refer to [DATA.md](../../docs/DATA.md#APIs) for details.
## Benchmark and Model Zoo
Supported architectures is shown in the below table, please refer to
[Algorithm Description](#Algorithm-Description) for details of the algorithm.
| | Original | Lite <sup>[1](#lite)</sup> | NAS <sup>[2](#nas)</sup> |
|:------------------------:|:--------:|:--------------------------:|:------------------------:|
| [BlazeFace](#BlazeFace) | ✓ | ✓ | ✓ |
| [FaceBoxes](#FaceBoxes) | ✓ | ✓ | x |
<a name="lite">[1]</a> `Lite` edition means reduces the number of network layers and channels.
<a name="nas">[2]</a> `NAS` edition means use `Neural Architecture Search` algorithm to
optimized network structure.
**Todo List:**
- [ ] HamBox
- [ ] Pyramidbox
### Model Zoo
#### mAP in WIDER FACE
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| FaceBoxes | Original | 640 | 8 | 32w | 0.875 | 0.848 | 0.568 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.898 | 0.872 | 0.752 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) |
**NOTES:**
- Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`.
For details can refer to [Evaluation](#Evaluate-on-the-WIDER-FACE).
- BlazeFace-Lite Training and Testing ues [blazeface.yml](../../configs/face_detection/blazeface.yml)
configs file and set `lite_edition: true`.
#### mAP in FDDB
| Architecture | Type | Size | DistROC | ContROC |
|:------------:|:--------:|:----:|:-------:|:-------:|
| BlazeFace | Original | 640 | **0.992** | **0.762** |
| BlazeFace | Lite | 640 | 0.990 | 0.756 |
| BlazeFace | NAS | 640 | 0.981 | 0.741 |
| FaceBoxes | Original | 640 | 0.985 | 0.731 |
| FaceBoxes | Lite | 640 | 0.987 | 0.741 |
**NOTES:**
- Get mAP by multi-scale evaluation on the FDDB dataset.
For details can refer to [Evaluation](#Evaluate-on-the-FDDB).
#### Infer Time and Model Size comparison
| Architecture | Type | Size | P4 (ms) | CPU (ms) | ARM (ms) | File size (MB) | Flops |
|:------------:|:--------:|:----:|:---------:|:--------:|:----------:|:--------------:|:---------:|
| BlazeFace | Original | 128 | - | - | - | - | - |
| BlazeFace | Lite | 128 | - | - | - | - | - |
| BlazeFace | NAS | 128 | - | - | - | - | - |
| FaceBoxes | Original | 128 | - | - | - | - | - |
| FaceBoxes | Lite | 128 | - | - | - | - | - |
| BlazeFace | Original | 320 | - | - | - | - | - |
| BlazeFace | Lite | 320 | - | - | - | - | - |
| BlazeFace | NAS | 320 | - | - | - | - | - |
| FaceBoxes | Original | 320 | - | - | - | - | - |
| FaceBoxes | Lite | 320 | - | - | - | - | - |
| BlazeFace | Original | 640 | - | - | - | - | - |
| BlazeFace | Lite | 640 | - | - | - | - | - |
| BlazeFace | NAS | 640 | - | - | - | - | - |
| FaceBoxes | Original | 640 | - | - | - | - | - |
| FaceBoxes | Lite | 640 | - | - | - | - | - |
**NOTES:**
- CPU: i5-7360U @ 2.30GHz. Single core and single thread.
## Get Started
`Training` and `Inference` please refer to [GETTING_STARTED.md](../../docs/GETTING_STARTED.md)
- **NOTES:**
- `BlazeFace` and `FaceBoxes` is trained in 4 GPU with `batch_size=8` per gpu (total batch size as 32)
and trained 320000 iters.(If your GPU count is not 4, please refer to the rule of training parameters
in the table of [calculation rules](../../docs/GETTING_STARTED.md#faq))
- Currently we do not support evaluation in training.
### Evaluation
```
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/face_eval.py -c configs/face_detection/blazeface.yml
```
- Optional arguments
- `-d` or `--dataset_dir`: Dataset path, same as dataset_dir of configs. Such as: `-d dataset/wider_face`.
- `-f` or `--output_eval`: Evaluation file directory, default is `output/pred`.
- `-e` or `--eval_mode`: Evaluation mode, include `widerface` and `fddb`, default is `widerface`.
- `--multi_scale`: If you add this action button in the command, it will select `multi_scale` evaluation.
Default is `False`, it will select `single-scale` evaluation.
After the evaluation is completed, the test result in txt format will be generated in `output/pred`,
and then mAP will be calculated according to different data sets. If you set `--eval_mode=widerface`,
it will [Evaluate on the WIDER FACE](#Evaluate-on-the-WIDER-FACE).If you set `--eval_mode=fddb`,
it will [Evaluate on the FDDB](#Evaluate-on-the-FDDB).
#### Evaluate on the WIDER FACE
- Download the official evaluation script to evaluate the AP metrics:
```
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
```
- Modify the result path and the name of the curve to be drawn in `eval_tools/wider_eval.m`:
```
# Modify the folder name where the result is stored.
pred_dir = './pred';
# Modify the name of the curve to be drawn
legend_name = 'Fluid-BlazeFace';
```
- `wider_eval.m` is the main execution program of the evaluation module. The run command is as follows:
```
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
```
#### Evaluate on the FDDB
[FDDB dataset](http://vis-www.cs.umass.edu/fddb/) details can refer to FDDB's official website.
- Download the official dataset and evaluation script to evaluate the ROC metrics:
```
#external link to the Faces in the Wild data set
wget http://tamaraberg.com/faceDataset/originalPics.tar.gz
#The annotations are split into ten folds. See README for details.
wget http://vis-www.cs.umass.edu/fddb/FDDB-folds.tgz
#information on directory structure and file formats
wget http://vis-www.cs.umass.edu/fddb/README.txt
```
- Install OpenCV: Requires [OpenCV library](http://sourceforge.net/projects/opencvlibrary/)
If the utility 'pkg-config' is not available for your operating system,
edit the Makefile to manually specify the OpenCV flags as following:
```
INCS = -I/usr/local/include/opencv
LIBS = -L/usr/local/lib -lcxcore -lcv -lhighgui -lcvaux -lml
```
- Compile FDDB evaluation code: execute `make` in evaluation folder.
- Generate full image path list and groundtruth in FDDB-folds. The run command is as follows:
```
cat `ls|grep -v"ellipse"` > filePath.txt` and `cat *ellipse* > fddb_annotFile.txt`
```
- Evaluation
Finally evaluation command is:
```
./evaluate -a ./FDDB/FDDB-folds/fddb_annotFile.txt \
-d DETECTION_RESULT.txt -f 0 \
-i ./FDDB -l ./FDDB/FDDB-folds/filePath.txt \
-r ./OUTPUT_DIR -z .jpg
```
**NOTES:** The interpretation of the argument can be performed by `./evaluate --help`.
## Algorithm Description
### BlazeFace
**Introduction:**
[BlazeFace](https://arxiv.org/abs/1907.05047) is Google Research published face detection model.
It's lightweight but good performance, and tailored for mobile GPU inference. It runs at a speed
of 200-1000+ FPS on flagship devices.
**Particularity:**
- Anchor scheme stops at 8×8(input 128x128), 6 anchors per pixel at that resolution.
- 5 single, and 6 double BlazeBlocks: 5×5 depthwise convs, same accuracy with fewer layers.
- Replace the non-maximum suppression algorithm with a blending strategy that estimates the
regression parameters of a bounding box as a weighted mean between the overlapping predictions.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: Replace 5x5 conv with 3x3 conv, fewer network layers and conv channels.
- NAS: use `Neural Architecture Search` algorithm to optimized network structure,
less network layer and conv channel number than `Lite`.
### FaceBoxes
**Introduction:**
[FaceBoxes](https://arxiv.org/abs/1708.05234) which named A CPU Real-time Face Detector
with High Accuracy is face detector proposed by Shifeng Zhang, with high performance on
both speed and accuracy. This paper is published by IJCB(2017).
**Particularity:**
- Anchor scheme stops at 20x20, 10x10, 5x5, which network input size is 640x640,
including 3, 1, 1 anchors per pixel at each resolution. The corresponding densities
are 1, 2, 4(20x20), 4(10x10) and 4(5x5).
- 2 convs with CReLU, 2 poolings, 3 inceptions and 2 convs with ReLU.
- Use density prior box to improve detection accuracy.
**Edition information:**
- Original: Reference original paper reproduction.
- Lite: 2 convs with CReLU, 1 pooling, 2 convs with ReLU, 3 inceptions and 2 convs with ReLU.
Anchor scheme stops at 80x80 and 40x40, including 3, 1 anchors per pixel at each resolution.
The corresponding densities are 1, 2, 4(80x80) and 4(40x40), using less conv channel number than lite.
## Contributing
Contributions are highly welcomed and we would really appreciate your feedback!!
architecture: BlazeFace
max_iters: 320000
train_feed: SSDTrainFeed
eval_feed: SSDEvalFeed
test_feed: SSDTestFeed
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
weights: output/blazeface/model_final/
# 1(label_class) + 1(background)
num_classes: 2
BlazeFace:
backbone: BlazeNet
output_decoder:
keep_top_k: 750
nms_threshold: 0.3
nms_top_k: 5000
score_threshold: 0.01
min_sizes: [[16.,24.], [32., 48., 64., 80., 96., 128.]]
use_density_prior_box: false
BlazeNet:
with_extra_blocks: true
lite_edition: false
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 300000]
OptimizerBuilder:
optimizer:
momentum: 0.0
type: RMSPropOptimizer
regularizer:
factor: 0.0005
type: L2
SSDTrainFeed:
batch_size: 8
use_process: True
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_train_bbx_gt.txt
image_dir: WIDER_train/images
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !ExpandImage
max_ratio: 4
prob: 0.5
- !CropImageWithDataAchorSampling
anchor_sampler:
- [1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]
batch_sampler:
- [1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
target_size: 640
- !RandomInterpImage
target_size: 640
- !RandomFlipImage
is_normalized: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDEvalFeed:
batch_size: 1
use_process: false
fields: ['image', 'im_id', 'gt_box']
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_val_bbx_gt.txt
image_dir: WIDER_val/images
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDTestFeed:
batch_size: 1
use_process: false
dataset:
use_default_label: true
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
architecture: BlazeFace
max_iters: 320000
train_feed: SSDTrainFeed
eval_feed: SSDEvalFeed
test_feed: SSDTestFeed
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
weights: output/blazeface_nas/model_final/
# 1(label_class) + 1(background)
num_classes: 2
BlazeFace:
backbone: BlazeNet
output_decoder:
keep_top_k: 750
nms_threshold: 0.3
nms_top_k: 5000
score_threshold: 0.01
min_sizes: [[16.,24.], [32., 48., 64., 80., 96., 128.]]
use_density_prior_box: false
BlazeNet:
blaze_filters: [[12, 12], [12, 12, 2], [12, 12]]
double_blaze_filters: [[12, 16, 24, 2], [24, 12, 24], [24, 16, 72, 2], [72, 12, 72]]
with_extra_blocks: true
lite_edition: false
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 300000]
OptimizerBuilder:
optimizer:
momentum: 0.0
type: RMSPropOptimizer
regularizer:
factor: 0.0005
type: L2
SSDTrainFeed:
batch_size: 8
use_process: True
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_train_bbx_gt.txt
image_dir: WIDER_train/images
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !ExpandImage
max_ratio: 4
prob: 0.5
- !CropImageWithDataAchorSampling
anchor_sampler:
- [1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]
batch_sampler:
- [1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
target_size: 640
- !RandomInterpImage
target_size: 640
- !RandomFlipImage
is_normalized: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDEvalFeed:
batch_size: 1
use_process: false
fields: ['image', 'im_id', 'gt_box']
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_val_bbx_gt.txt
image_dir: WIDER_val/images
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDTestFeed:
batch_size: 1
use_process: false
dataset:
use_default_label: true
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
architecture: FaceBoxes
train_feed: SSDTrainFeed
eval_feed: SSDEvalFeed
test_feed: SSDTestFeed
pretrain_weights:
use_gpu: true
max_iters: 320000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
weights: output/faceboxes/model_final/
# 1(label_class) + 1(background)
num_classes: 2
FaceBoxes:
backbone: FaceBoxNet
densities: [[4, 2, 1], [1], [1]]
fixed_sizes: [[32., 64., 128.], [256.], [512.]]
output_decoder:
keep_top_k: 750
nms_threshold: 0.3
nms_top_k: 5000
score_threshold: 0.01
FaceBoxNet:
with_extra_blocks: true
lite_edition: false
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 300000]
OptimizerBuilder:
optimizer:
momentum: 0.0
type: RMSPropOptimizer
regularizer:
factor: 0.0005
type: L2
SSDTrainFeed:
batch_size: 8
use_process: True
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_train_bbx_gt.txt
image_dir: WIDER_train/images
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !ExpandImage
max_ratio: 4
prob: 0.5
- !CropImageWithDataAchorSampling
anchor_sampler:
- [1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]
batch_sampler:
- [1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
target_size: 640
- !RandomInterpImage
target_size: 640
- !RandomFlipImage
is_normalized: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDEvalFeed:
batch_size: 1
use_process: false
fields: ['image', 'im_id', 'gt_box']
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_val_bbx_gt.txt
image_dir: WIDER_val/images
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDTestFeed:
batch_size: 1
use_process: false
dataset:
use_default_label: true
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
architecture: FaceBoxes
train_feed: SSDTrainFeed
eval_feed: SSDEvalFeed
test_feed: SSDTestFeed
pretrain_weights:
use_gpu: true
max_iters: 320000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
weights: output/faceboxes_lite/model_final/
# 1(label_class) + 1(background)
num_classes: 2
FaceBoxes:
backbone: FaceBoxNet
densities: [[2, 1, 1], [1, 1]]
fixed_sizes: [[16., 32., 64.], [96., 128.]]
output_decoder:
keep_top_k: 750
nms_threshold: 0.3
nms_top_k: 5000
score_threshold: 0.01
FaceBoxNet:
with_extra_blocks: true
lite_edition: true
LearningRate:
base_lr: 0.001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 300000]
OptimizerBuilder:
optimizer:
momentum: 0.0
type: RMSPropOptimizer
regularizer:
factor: 0.0005
type: L2
SSDTrainFeed:
batch_size: 8
use_process: True
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_train_bbx_gt.txt
image_dir: WIDER_train/images
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !RandomDistort
brightness_lower: 0.875
brightness_upper: 1.125
is_order: true
- !ExpandImage
max_ratio: 4
prob: 0.5
- !CropImageWithDataAchorSampling
anchor_sampler:
- [1, 10, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.2, 0.0]
batch_sampler:
- [1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
- [1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0]
target_size: 640
- !RandomInterpImage
target_size: 640
- !RandomFlipImage
is_normalized: true
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDEvalFeed:
batch_size: 1
use_process: false
fields: ['image', 'im_id', 'gt_box']
dataset:
dataset_dir: dataset/wider_face
annotation: wider_face_split/wider_face_val_bbx_gt.txt
image_dir: WIDER_val/images
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
SSDTestFeed:
batch_size: 1
use_process: false
dataset:
use_default_label: true
drop_last: false
image_shape: [3, 640, 640]
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !ResizeImage
interp: 1
target_size: 640
use_cv2: false
- !Permute {}
- !NormalizeImage
is_scale: false
mean: [104, 117, 123]
std: [127.502231, 127.502231, 127.502231]
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
use_gpu: true
max_iters: 180000
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r101_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
rpn_head: RPNHead
roi_extractor: RoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
depth: 101
feature_maps: 4
freeze_at: 2
ResNetC5:
depth: 101
norm_type: affine_channel
RPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
use_random: true
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 12000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 6000
post_nms_top_n: 1000
RoIAlign:
resolution: 14
sampling_ratio: 0
spatial_scale: 0.0625
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: ResNetC5
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/faster_rcnn_r101_fpn_1x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/faster_rcnn_r101_fpn_2x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_r101_vd_fpn_1x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
variant: d
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_r101_vd_fpn_2x/model_final
metric: COCO
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
depth: 101
feature_maps: [2, 3, 4, 5]
freeze_at: 2
norm_type: affine_channel
variant: d
FPN:
max_level: 6
min_level: 2
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
max_level: 6
min_level: 2
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 2000
pre_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
post_nms_top_n: 1000
pre_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
max_level: 5
min_level: 2
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
image_dir: train2017
annotation: annotations/instances_train2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
use_gpu: true
max_iters: 180000
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
rpn_head: RPNHead
roi_extractor: RoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: 4
freeze_at: 2
ResNetC5:
depth: 50
norm_type: affine_channel
RPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
use_random: true
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 12000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 6000
post_nms_top_n: 1000
RoIAlign:
resolution: 14
sampling_ratio: 0
spatial_scale: 0.0625
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: ResNetC5
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
use_gpu: true
max_iters: 360000
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_2x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
rpn_head: RPNHead
roi_extractor: RoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: 4
freeze_at: 2
ResNetC5:
depth: 50
norm_type: affine_channel
RPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
use_random: true
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 12000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 6000
post_nms_top_n: 1000
RoIAlign:
resolution: 14
sampling_ratio: 0
spatial_scale: 0.0625
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: ResNetC5
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [240000, 320000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_fpn_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: bn
norm_decay: 0.
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_lo: 0.0
bg_thresh_hi: 0.5
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [60000, 80000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 180000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_fpn_2x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
fpn: FPN
rpn_head: FPNRPNHead
roi_extractor: FPNRoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
norm_decay: 0.
depth: 50
feature_maps: [2, 3, 4, 5]
freeze_at: 2
FPN:
min_level: 2
max_level: 6
num_chan: 256
spatial_scale: [0.03125, 0.0625, 0.125, 0.25]
FPNRPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
anchor_start_size: 32
min_level: 2
max_level: 6
num_chan: 256
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_positive_overlap: 0.7
rpn_negative_overlap: 0.3
rpn_straddle_thresh: 0.0
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 2000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 1000
post_nms_top_n: 1000
FPNRoIAlign:
canconical_level: 4
canonical_size: 224
min_level: 2
max_level: 5
box_resolution: 7
sampling_ratio: 2
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_lo: 0.0
bg_thresh_hi: 0.5
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: TwoFCHead
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
TwoFCHead:
mlp_dim: 1024
LearningRate:
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.3333333333333333
steps: 500
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
batch_size: 2
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
batch_transforms:
- !PadBatch
pad_to_stride: 32
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/coco/annotations/instances_val2017.json
batch_transforms:
- !PadBatch
pad_to_stride: 32
drop_last: false
num_workers: 2
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
use_gpu: true
max_iters: 180000
log_smooth_window: 20
save_dir: output/faster-r50-vd-c4-1x
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r50_vd_1x/model_final
num_classes: 81
FasterRCNN:
backbone: ResNet
rpn_head: RPNHead
roi_extractor: RoIAlign
bbox_head: BBoxHead
bbox_assigner: BBoxAssigner
ResNet:
norm_type: affine_channel
depth: 50
feature_maps: 4
freeze_at: 2
variant: d
ResNetC5:
depth: 50
norm_type: affine_channel
variant: d
RPNHead:
anchor_generator:
anchor_sizes: [32, 64, 128, 256, 512]
aspect_ratios: [0.5, 1.0, 2.0]
stride: [16.0, 16.0]
variance: [1.0, 1.0, 1.0, 1.0]
rpn_target_assign:
rpn_batch_size_per_im: 256
rpn_fg_fraction: 0.5
rpn_negative_overlap: 0.3
rpn_positive_overlap: 0.7
rpn_straddle_thresh: 0.0
use_random: true
train_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 12000
post_nms_top_n: 2000
test_proposal:
min_size: 0.0
nms_thresh: 0.7
pre_nms_top_n: 6000
post_nms_top_n: 1000
RoIAlign:
resolution: 14
sampling_ratio: 0
spatial_scale: 0.0625
BBoxAssigner:
batch_size_per_im: 512
bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
bg_thresh_hi: 0.5
bg_thresh_lo: 0.0
fg_fraction: 0.25
fg_thresh: 0.5
BBoxHead:
head: ResNetC5
nms:
keep_top_k: 100
nms_threshold: 0.5
score_threshold: 0.05
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [120000, 160000]
- !LinearWarmup
start_factor: 0.1
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
FasterRCNNTrainFeed:
# batch size per device
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_train2017.json
image_dir: train2017
drop_last: false
num_workers: 2
FasterRCNNEvalFeed:
batch_size: 1
dataset:
dataset_dir: dataset/coco
annotation: annotations/instances_val2017.json
image_dir: val2017
num_workers: 2
FasterRCNNTestFeed:
batch_size: 1
dataset:
annotation: dataset/coco/annotations/instances_val2017.json
{
"images": [],
"annotations": [],
"categories": [
{
"supercategory": "component",
"id": 1,
"name": "pedestrian"
}
]
}
此差异已折叠。
此差异已折叠。
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path as osp
import logging
from ppdet.utils.download import download_dataset
logging.basicConfig(level=logging.INFO)
download_path = osp.split(osp.realpath(sys.argv[0]))[0]
download_dataset(download_path, 'coco')
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册