Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c173e64b
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c173e64b
编写于
11月 21, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add is_sparse and args optimize
上级
873b5475
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
39 addition
and
32 deletion
+39
-32
fluid/PaddleRec/word2vec/network_conf.py
fluid/PaddleRec/word2vec/network_conf.py
+9
-11
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+30
-21
未找到文件。
fluid/PaddleRec/word2vec/network_conf.py
浏览文件 @
c173e64b
...
...
@@ -28,12 +28,10 @@ def skip_gram_word2vec(dict_size,
embedding_size
,
max_code_length
=
None
,
with_hsigmoid
=
False
,
with_nce
=
True
):
with_nce
=
True
,
is_sparse
=
False
):
def
nce_layer
(
input
,
label
,
embedding_size
,
num_total_classes
,
num_neg_samples
,
sampler
,
custom_dist
,
sample_weight
):
# convert word_frequencys to tensor
nid_freq_arr
=
np
.
array
(
word_frequencys
).
astype
(
'float32'
)
nid_freq_var
=
fluid
.
layers
.
assign
(
input
=
nid_freq_arr
)
num_neg_samples
,
sampler
,
word_frequencys
,
sample_weight
):
w_param_name
=
"nce_w"
b_param_name
=
"nce_b"
...
...
@@ -48,11 +46,11 @@ def skip_gram_word2vec(dict_size,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
nid_freq_var
,
custom_dist
=
word_frequencys
,
sample_weight
=
sample_weight
,
param_attr
=
fluid
.
ParamAttr
(
name
=
w_param_name
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
b_param_name
),
num_neg_samples
=
num_neg_samples
)
num_neg_samples
=
num_neg_samples
,
is_sparse
=
is_sparse
)
return
cost
...
...
@@ -76,8 +74,8 @@ def skip_gram_word2vec(dict_size,
non_leaf_num
=
dict_size
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
predict_word
,
input
=
input
,
label
=
label
,
non_leaf_num
=
non_leaf_num
,
ptable
=
ptable
,
pcode
=
pcode
,
...
...
@@ -86,13 +84,13 @@ def skip_gram_word2vec(dict_size,
return
cost
input_word
=
fluid
.
layers
.
data
(
name
=
"input_word"
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
fluid
.
layers
.
data
(
name
=
'predict_word'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
None
data_list
=
[
input_word
,
predict_word
]
emb
=
fluid
.
layers
.
embedding
(
input
=
input_word
,
is_sparse
=
is_sparse
,
size
=
[
dict_size
,
embedding_size
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
dict_size
))))
...
...
fluid/PaddleRec/word2vec/train.py
浏览文件 @
c173e64b
...
...
@@ -5,7 +5,7 @@ import logging
import
os
import
time
# disable gpu training for this example
# disable gpu training for this example
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
""
import
paddle
...
...
@@ -57,6 +57,31 @@ def parse_args():
default
=
64
,
help
=
'sparse feature hashing space for index processing'
)
parser
.
add_argument
(
'--with_hs'
,
action
=
'store_true'
,
required
=
False
,
default
=
False
,
help
=
'using hierarchical sigmoid, (default: False)'
)
parser
.
add_argument
(
'--with_nce'
,
action
=
'store_true'
,
required
=
False
,
default
=
True
,
help
=
'using negtive sampling, (default: True)'
)
parser
.
add_argument
(
'--max_code_length'
,
type
=
int
,
default
=
40
,
help
=
'max code length used by hierarchical sigmoid, (default: 40)'
)
parser
.
add_argument
(
'--is_sparse'
,
type
=
bool
,
default
=
False
,
help
=
'embedding and nce will use sparse or not, (default: False)'
)
parser
.
add_argument
(
'--is_local'
,
type
=
int
,
...
...
@@ -88,21 +113,6 @@ def parse_args():
type
=
int
,
default
=
1
,
help
=
'The num of trianers, (default: 1)'
)
parser
.
add_argument
(
'--with_hs'
,
type
=
int
,
default
=
0
,
help
=
'using hierarchical sigmoid, (default: 0)'
)
parser
.
add_argument
(
'--with_nce'
,
type
=
int
,
default
=
1
,
help
=
'using negtive sampling, (default: 1)'
)
parser
.
add_argument
(
'--max_code_length'
,
type
=
int
,
default
=
40
,
help
=
'max code length used by hierarchical sigmoid, (default: 40)'
)
return
parser
.
parse_args
()
...
...
@@ -142,8 +152,7 @@ def train_loop(args, train_program, reader, data_list, loss, trainer_num,
[
loss
],
exe
)
model_dir
=
args
.
model_output_dir
+
'/pass-'
+
str
(
pass_id
)
if
args
.
trainer_id
==
0
:
fluid
.
io
.
save_inference_model
(
model_dir
,
data_name_list
,
[
loss
],
exe
)
fluid
.
io
.
save_inference_model
(
model_dir
,
data_name_list
,
[
loss
],
exe
)
def
train
():
...
...
@@ -156,12 +165,12 @@ def train():
args
.
train_data_path
)
logger
.
info
(
"dict_size: {}"
.
format
(
word2vec_reader
.
dict_size
))
logger
.
info
(
"word_frequencys length: {}"
.
format
(
len
(
word2vec_reader
.
word_frequencys
)))
loss
,
data_list
=
skip_gram_word2vec
(
word2vec_reader
.
dict_size
,
word2vec_reader
.
word_frequencys
,
args
.
embedding_size
,
args
.
max_code_length
,
args
.
with_hs
,
args
.
with_nce
)
args
.
embedding_size
,
args
.
max_code_length
,
args
.
with_hs
,
args
.
with_nce
,
is_sparse
=
args
.
is_sparse
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
)
optimizer
.
minimize
(
loss
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录