Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c1016c8b
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c1016c8b
编写于
1月 31, 2019
作者:
R
ruri
提交者:
GitHub
1月 31, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1705 from shippingwang/dev_sc
refine image classification train script
上级
a4500a88
526beac8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
91 addition
and
59 deletion
+91
-59
fluid/PaddleCV/image_classification/README.md
fluid/PaddleCV/image_classification/README.md
+1
-0
fluid/PaddleCV/image_classification/README_cn.md
fluid/PaddleCV/image_classification/README_cn.md
+1
-0
fluid/PaddleCV/image_classification/run.sh
fluid/PaddleCV/image_classification/run.sh
+16
-6
fluid/PaddleCV/image_classification/train.py
fluid/PaddleCV/image_classification/train.py
+73
-53
未找到文件。
fluid/PaddleCV/image_classification/README.md
浏览文件 @
c1016c8b
...
...
@@ -209,6 +209,7 @@ Models are trained by starting with learning rate ```0.1``` and decaying it by `
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip
)
| 72.08%/90.63% | 71.65%/90.57% |
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip
)
| 72.56%/90.83% | 72.32%/90.98% |
|
[
MobileNetV1
](
http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip
)
| 70.91%/89.54% | 70.51%/89.35% |
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip
)
| 71.90%/90.55% | 71.53%/90.41% |
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip
)
| 76.35%/92.80% | 76.22%/92.92% |
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip
)
| 77.49%/93.57% | 77.56%/93.64% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip
)
| 78.12%/93.93% | 77.92%/93.87% |
...
...
fluid/PaddleCV/image_classification/README_cn.md
浏览文件 @
c1016c8b
...
...
@@ -204,6 +204,7 @@ Models包括两种模型:带有参数名字的模型,和不带有参数名
|
[
VGG16
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_pretrained.zip
)
| 72.08%/90.63% | 71.65%/90.57% |
|
[
VGG19
](
https://paddle-imagenet-models-name.bj.bcebos.com/VGG19_pretrained.zip
)
| 72.56%/90.83% | 72.32%/90.98% |
|
[
MobileNetV1
](
http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.zip
)
| 70.91%/89.54% | 70.51%/89.35% |
|
[
MobileNetV2
](
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.zip
)
| 71.90%/90.55% | 71.53%/90.41% |
|
[
ResNet50
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.zip
)
| 76.35%/92.80% | 76.22%/92.92% |
|
[
ResNet101
](
http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.zip
)
| 77.49%/93.57% | 77.56%/93.64% |
|
[
ResNet152
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_pretrained.zip
)
| 78.12%/93.93% | 77.92%/93.87% |
...
...
fluid/PaddleCV/image_classification/run.sh
浏览文件 @
c1016c8b
...
...
@@ -6,7 +6,7 @@ python train.py \
--class_dim
=
1000
\
--image_shape
=
3,224,224
\
--model_save_dir
=
output/
\
--with_mem_opt
=
Fals
e
\
--with_mem_opt
=
Tru
e
\
--lr_strategy
=
piecewise_decay
\
--lr
=
0.1
# >log_SE_ResNeXt50_32x4d.txt 2>&1 &
...
...
@@ -19,7 +19,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=
Fals
e \
# --with_mem_opt=
Tru
e \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.01
...
...
@@ -32,7 +32,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=
Fals
e \
# --with_mem_opt=
Tru
e \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
...
...
@@ -46,12 +46,22 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=
Fals
e \
# --with_mem_opt=
Tru
e \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
#python train.py \
# --model=MobileNetV2 \
# --batch_size=500 \
# --total_images=1281167 \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=True \
# --lr_strategy=cosine_decay \
# --num_epochs=200 \
# --lr=0.1
#ResNet50:
#python train.py \
# --model=ResNet50 \
...
...
@@ -60,7 +70,7 @@ python train.py \
# --class_dim=1000 \
# --image_shape=3,224,224 \
# --model_save_dir=output/ \
# --with_mem_opt=
Fals
e \
# --with_mem_opt=
Tru
e \
# --lr_strategy=piecewise_decay \
# --num_epochs=120 \
# --lr=0.1
...
...
fluid/PaddleCV/image_classification/train.py
浏览文件 @
c1016c8b
...
...
@@ -10,7 +10,6 @@ import math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.dataset.flowers
as
flowers
import
models
import
reader
import
argparse
import
functools
...
...
@@ -19,8 +18,8 @@ import utils
from
utils.learning_rate
import
cosine_decay
from
utils.fp16_utils
import
create_master_params_grads
,
master_param_to_train_param
from
utility
import
add_arguments
,
print_arguments
import
models
import
models_name
IMAGENET1000
=
1281167
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
...
...
@@ -40,25 +39,32 @@ add_arg('lr_strategy', str, "piecewise_decay", "Set the learning rate
add_arg
(
'model'
,
str
,
"SE_ResNeXt50_32x4d"
,
"Set the network to use."
)
add_arg
(
'enable_ce'
,
bool
,
False
,
"If set True, enable continuous evaluation job."
)
add_arg
(
'data_dir'
,
str
,
"./data/ILSVRC2012"
,
"The ImageNet dataset root dir."
)
add_arg
(
'model_category'
,
str
,
"models"
,
"Whether to use models_name or not, valid value:'models','models_name'
"
)
add_arg
(
'model_category'
,
str
,
"models"
,
"Whether to use models_name or not, valid value:'models','models_name'.
"
)
add_arg
(
'fp16'
,
bool
,
False
,
"Enable half precision training with fp16."
)
add_arg
(
'scale_loss'
,
float
,
1.0
,
"Scale loss for fp16."
)
add_arg
(
'l2_decay'
,
float
,
1e-4
,
"L2_decay parameter."
)
add_arg
(
'momentum_rate'
,
float
,
0.9
,
"momentum_rate."
)
# yapf: enable
def
set_models
(
model
):
def
set_models
(
model
_category
):
global
models
if
model
==
"models"
:
models
=
models
assert
model_category
in
[
"models"
,
"models_name"
],
"{} is not in lists: {}"
.
format
(
model_category
,
[
"models"
,
"models_name"
])
if
model_category
==
"models_name"
:
import
models_name
as
models
else
:
models
=
models_name
import
models
as
models
def
optimizer_setting
(
params
):
ls
=
params
[
"learning_strategy"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
if
ls
[
"name"
]
==
"piecewise_decay"
:
if
"total_images"
not
in
params
:
total_images
=
1281167
total_images
=
IMAGENET1000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
...
...
@@ -71,16 +77,17 @@ def optimizer_setting(params):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
elif
ls
[
"name"
]
==
"cosine_decay"
:
if
"total_images"
not
in
params
:
total_images
=
1281167
total_images
=
IMAGENET1000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
step
=
int
(
total_images
/
batch_size
+
1
)
lr
=
params
[
"lr"
]
...
...
@@ -89,43 +96,42 @@ def optimizer_setting(params):
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
cosine_decay
(
learning_rate
=
lr
,
step_each_epoch
=
step
,
epochs
=
num_epochs
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
elif
ls
[
"name"
]
==
"
exponential
_decay"
:
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
elif
ls
[
"name"
]
==
"
linear
_decay"
:
if
"total_images"
not
in
params
:
total_images
=
1281167
total_images
=
IMAGENET1000
else
:
total_images
=
params
[
"total_images"
]
batch_size
=
ls
[
"batch_size"
]
step
=
int
(
total_images
/
batch_size
+
1
)
lr
=
params
[
"lr"
]
num_epochs
=
params
[
"num_epochs"
]
learning_decay_rate_factor
=
ls
[
"learning_decay_rate_factor"
]
num_epochs_per_decay
=
ls
[
"num_epochs_per_decay"
]
NUM_GPUS
=
1
start_lr
=
params
[
"lr"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
end_lr
=
0
total_step
=
int
((
total_images
/
batch_size
)
*
num_epochs
)
lr
=
fluid
.
layers
.
polynomial_decay
(
start_lr
,
total_step
,
end_lr
,
power
=
1
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
lr
*
NUM_GPUS
,
decay_steps
=
step
*
num_epochs_per_decay
/
NUM_GPUS
,
decay_rate
=
learning_decay_rate_factor
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
4e-5
))
learning_rate
=
lr
,
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
else
:
lr
=
params
[
"lr"
]
l2_decay
=
params
[
"l2_decay"
]
momentum_rate
=
params
[
"momentum_rate"
]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
lr
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
momentum
=
momentum_rate
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
l2_decay
))
return
optimizer
def
net_config
(
image
,
label
,
model
,
args
):
model_list
=
[
m
for
m
in
dir
(
models
)
if
"__"
not
in
m
]
assert
args
.
model
in
model_list
,
"{} is not lists: {}"
.
format
(
args
.
model
,
model_list
)
assert
args
.
model
in
model_list
,
"{} is not lists: {}"
.
format
(
args
.
model
,
model_list
)
class_dim
=
args
.
class_dim
model_name
=
args
.
model
...
...
@@ -148,8 +154,9 @@ def net_config(image, label, model, args):
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out0
,
label
=
label
,
k
=
5
)
else
:
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
out
,
label
,
return_softmax
=
True
)
out
=
model
.
net
(
input
=
image
,
class_dim
=
class_dim
)
cost
,
pred
=
fluid
.
layers
.
softmax_with_cross_entropy
(
out
,
label
,
return_softmax
=
True
)
if
args
.
scale_loss
>
1
:
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
*
float
(
args
.
scale_loss
)
else
:
...
...
@@ -190,19 +197,25 @@ def build_program(is_train, main_prog, startup_prog, args):
params
[
"num_epochs"
]
=
args
.
num_epochs
params
[
"learning_strategy"
][
"batch_size"
]
=
args
.
batch_size
params
[
"learning_strategy"
][
"name"
]
=
args
.
lr_strategy
params
[
"l2_decay"
]
=
args
.
l2_decay
params
[
"momentum_rate"
]
=
args
.
momentum_rate
optimizer
=
optimizer_setting
(
params
)
if
args
.
fp16
:
params_grads
=
optimizer
.
backward
(
avg_cost
)
master_params_grads
=
create_master_params_grads
(
params_grads
,
main_prog
,
startup_prog
,
args
.
scale_loss
)
optimizer
.
apply_gradients
(
master_params_grads
)
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
master_param_to_train_param
(
master_params_grads
,
params_grads
,
main_prog
)
else
:
optimizer
.
minimize
(
avg_cost
)
global_lr
=
optimizer
.
_global_learning_rate
()
return
py_reader
,
avg_cost
,
acc_top1
,
acc_top5
if
is_train
:
return
py_reader
,
avg_cost
,
acc_top1
,
acc_top5
,
global_lr
else
:
return
py_reader
,
avg_cost
,
acc_top1
,
acc_top5
def
train
(
args
):
...
...
@@ -220,7 +233,7 @@ def train(args):
startup_prog
.
random_seed
=
1000
train_prog
.
random_seed
=
1000
train_py_reader
,
train_cost
,
train_acc1
,
train_acc5
=
build_program
(
train_py_reader
,
train_cost
,
train_acc1
,
train_acc5
,
global_lr
=
build_program
(
is_train
=
True
,
main_prog
=
train_prog
,
startup_prog
=
startup_prog
,
...
...
@@ -255,7 +268,8 @@ def train(args):
if
visible_device
:
device_num
=
len
(
visible_device
.
split
(
','
))
else
:
device_num
=
subprocess
.
check_output
([
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
device_num
=
subprocess
.
check_output
(
[
'nvidia-smi'
,
'-L'
]).
decode
().
count
(
'
\n
'
)
train_batch_size
=
args
.
batch_size
/
device_num
test_batch_size
=
16
...
...
@@ -283,11 +297,12 @@ def train(args):
use_cuda
=
bool
(
args
.
use_gpu
),
loss_name
=
train_cost
.
name
)
train_fetch_list
=
[
train_cost
.
name
,
train_acc1
.
name
,
train_acc5
.
name
]
train_fetch_list
=
[
train_cost
.
name
,
train_acc1
.
name
,
train_acc5
.
name
,
global_lr
.
name
]
test_fetch_list
=
[
test_cost
.
name
,
test_acc1
.
name
,
test_acc5
.
name
]
params
=
models
.
__dict__
[
args
.
model
]().
params
for
pass_id
in
range
(
params
[
"num_epochs"
]):
train_py_reader
.
start
()
...
...
@@ -299,7 +314,9 @@ def train(args):
try
:
while
True
:
t1
=
time
.
time
()
loss
,
acc1
,
acc5
=
train_exe
.
run
(
fetch_list
=
train_fetch_list
)
loss
,
acc1
,
acc5
,
lr
=
train_exe
.
run
(
fetch_list
=
train_fetch_list
)
t2
=
time
.
time
()
period
=
t2
-
t1
loss
=
np
.
mean
(
np
.
array
(
loss
))
...
...
@@ -308,21 +325,27 @@ def train(args):
train_info
[
0
].
append
(
loss
)
train_info
[
1
].
append
(
acc1
)
train_info
[
2
].
append
(
acc5
)
lr
=
np
.
mean
(
np
.
array
(
lr
))
train_time
.
append
(
period
)
if
batch_id
%
10
==
0
:
print
(
"Pass {0}, trainbatch {1}, loss {2},
\
acc1 {3}, acc5 {4}
time {5
}"
.
format
(
pass_id
,
batch_id
,
loss
,
acc1
,
acc5
,
"%2.2f sec"
%
period
))
acc1 {3}, acc5 {4}
, lr{5}, time {6
}"
.
format
(
pass_id
,
batch_id
,
loss
,
acc1
,
acc5
,
"%.5f"
%
lr
,
"%2.2f sec"
%
period
))
sys
.
stdout
.
flush
()
batch_id
+=
1
if
batch_id
==
31
:
exit
(
0
)
except
fluid
.
core
.
EOFException
:
train_py_reader
.
reset
()
train_loss
=
np
.
array
(
train_info
[
0
]).
mean
()
train_acc1
=
np
.
array
(
train_info
[
1
]).
mean
()
train_acc5
=
np
.
array
(
train_info
[
2
]).
mean
()
train_speed
=
np
.
array
(
train_time
).
mean
()
/
(
train_batch_size
*
device_num
)
train_speed
=
np
.
array
(
train_time
).
mean
()
/
(
train_batch_size
*
device_num
)
test_py_reader
.
start
()
...
...
@@ -394,10 +417,7 @@ def train(args):
def
main
():
args
=
parser
.
parse_args
()
models_now
=
args
.
model_category
assert
models_now
in
[
"models"
,
"models_name"
],
"{} is not in lists: {}"
.
format
(
models_now
,
[
"models"
,
"models_name"
])
set_models
(
models_now
)
set_models
(
args
.
model_category
)
print_arguments
(
args
)
train
(
args
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录