Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c0b6a1d1
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c0b6a1d1
编写于
12月 27, 2018
作者:
Z
zhengya01
提交者:
GitHub
12月 27, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #2 from PaddlePaddle/develop
merge from upstream
上级
cbe656e0
3b4eb996
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
190 addition
and
45 deletion
+190
-45
fluid/PaddleCV/deeplabv3+/eval.py
fluid/PaddleCV/deeplabv3+/eval.py
+3
-2
fluid/PaddleCV/deeplabv3+/models.py
fluid/PaddleCV/deeplabv3+/models.py
+47
-31
fluid/PaddleCV/deeplabv3+/train.py
fluid/PaddleCV/deeplabv3+/train.py
+23
-8
fluid/PaddleNLP/text_matching_on_quora/.run_ce.sh
fluid/PaddleNLP/text_matching_on_quora/.run_ce.sh
+14
-0
fluid/PaddleNLP/text_matching_on_quora/__init__.py
fluid/PaddleNLP/text_matching_on_quora/__init__.py
+0
-0
fluid/PaddleNLP/text_matching_on_quora/_ce.py
fluid/PaddleNLP/text_matching_on_quora/_ce.py
+65
-0
fluid/PaddleNLP/text_matching_on_quora/train_and_evaluate.py
fluid/PaddleNLP/text_matching_on_quora/train_and_evaluate.py
+38
-4
未找到文件。
fluid/PaddleCV/deeplabv3+/eval.py
浏览文件 @
c0b6a1d1
...
...
@@ -26,6 +26,7 @@ def add_arguments():
add_argument
(
'dataset_path'
,
str
,
None
,
"Cityscape dataset path."
)
add_argument
(
'verbose'
,
bool
,
False
,
"Print mIoU for each step if verbose."
)
add_argument
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU or CPU."
)
add_argument
(
'num_classes'
,
int
,
19
,
"Number of classes."
)
def
mean_iou
(
pred
,
label
):
...
...
@@ -69,7 +70,7 @@ tp = fluid.Program()
batch_size
=
1
reader
.
default_config
[
'crop_size'
]
=
-
1
reader
.
default_config
[
'shuffle'
]
=
False
num_classes
=
19
num_classes
=
args
.
num_classes
with
fluid
.
program_guard
(
tp
,
sp
):
img
=
fluid
.
layers
.
data
(
name
=
'img'
,
shape
=
[
3
,
0
,
0
],
dtype
=
'float32'
)
...
...
@@ -84,7 +85,7 @@ tp = tp.clone(True)
fluid
.
memory_optimize
(
tp
,
print_log
=
False
,
skip_opt_set
=
[
pred
.
name
,
miou
,
out_wrong
,
out_correct
]
,
skip_opt_set
=
set
([
pred
.
name
,
miou
,
out_wrong
,
out_correct
])
,
level
=
1
)
place
=
fluid
.
CPUPlace
()
...
...
fluid/PaddleCV/deeplabv3+/models.py
浏览文件 @
c0b6a1d1
...
...
@@ -20,6 +20,11 @@ op_results = {}
default_epsilon
=
1e-3
default_norm_type
=
'bn'
default_group_number
=
32
depthwise_use_cudnn
=
False
bn_regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)
depthwise_regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)
@
contextlib
.
contextmanager
...
...
@@ -52,20 +57,39 @@ def append_op_result(result, name):
def
conv
(
*
args
,
**
kargs
):
kargs
[
'param_attr'
]
=
name_scope
+
'weights'
if
"xception"
in
name_scope
:
init_std
=
0.09
elif
"logit"
in
name_scope
:
init_std
=
0.01
elif
name_scope
.
endswith
(
'depthwise/'
):
init_std
=
0.33
else
:
init_std
=
0.06
if
name_scope
.
endswith
(
'depthwise/'
):
regularizer
=
depthwise_regularizer
else
:
regularizer
=
None
kargs
[
'param_attr'
]
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'weights'
,
regularizer
=
regularizer
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
init_std
))
if
'bias_attr'
in
kargs
and
kargs
[
'bias_attr'
]:
kargs
[
'bias_attr'
]
=
name_scope
+
'biases'
kargs
[
'bias_attr'
]
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'biases'
,
regularizer
=
regularizer
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
0.0
))
else
:
kargs
[
'bias_attr'
]
=
False
kargs
[
'name'
]
=
name_scope
+
'conv'
return
append_op_result
(
fluid
.
layers
.
conv2d
(
*
args
,
**
kargs
),
'conv'
)
def
group_norm
(
input
,
G
,
eps
=
1e-5
,
param_attr
=
None
,
bias_attr
=
None
):
helper
=
fluid
.
layer_helper
.
LayerHelper
(
'group_norm'
,
**
locals
())
N
,
C
,
H
,
W
=
input
.
shape
if
C
%
G
!=
0
:
print
(
"group can not divide channle:"
,
C
,
G
)
# print "group can not divide channle:", C, G
for
d
in
range
(
10
):
for
t
in
[
d
,
-
d
]:
if
G
+
t
<=
0
:
continue
...
...
@@ -73,29 +97,16 @@ def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
G
=
G
+
t
break
if
C
%
G
==
0
:
print
(
"use group size:"
,
G
)
# print "use group size:", G
break
assert
C
%
G
==
0
param_shape
=
(
G
,
)
x
=
input
x
=
fluid
.
layers
.
reshape
(
x
,
[
N
,
G
,
C
//
G
*
H
*
W
])
mean
=
fluid
.
layers
.
reduce_mean
(
x
,
dim
=
2
,
keep_dim
=
True
)
x
=
x
-
mean
var
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
square
(
x
),
dim
=
2
,
keep_dim
=
True
)
x
=
x
/
fluid
.
layers
.
sqrt
(
var
+
eps
)
scale
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
shape
=
param_shape
,
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.0
))
bias
=
helper
.
create_parameter
(
attr
=
helper
.
bias_attr
,
shape
=
param_shape
,
dtype
=
'float32'
,
is_bias
=
True
)
x
=
fluid
.
layers
.
elementwise_add
(
fluid
.
layers
.
elementwise_mul
(
x
,
scale
,
axis
=
1
),
bias
,
axis
=
1
)
return
fluid
.
layers
.
reshape
(
x
,
input
.
shape
)
x
=
fluid
.
layers
.
group_norm
(
input
,
groups
=
G
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
name
=
name_scope
+
'group_norm'
)
return
x
def
bn
(
*
args
,
**
kargs
):
...
...
@@ -106,8 +117,10 @@ def bn(*args, **kargs):
*
args
,
epsilon
=
default_epsilon
,
momentum
=
bn_momentum
,
param_attr
=
name_scope
+
'gamma'
,
bias_attr
=
name_scope
+
'beta'
,
param_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'gamma'
,
regularizer
=
bn_regularizer
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'beta'
,
regularizer
=
bn_regularizer
),
moving_mean_name
=
name_scope
+
'moving_mean'
,
moving_variance_name
=
name_scope
+
'moving_variance'
,
**
kargs
),
...
...
@@ -119,8 +132,10 @@ def bn(*args, **kargs):
args
[
0
],
default_group_number
,
eps
=
default_epsilon
,
param_attr
=
name_scope
+
'gamma'
,
bias_attr
=
name_scope
+
'beta'
),
param_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'gamma'
,
regularizer
=
bn_regularizer
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'beta'
,
regularizer
=
bn_regularizer
)),
'gn'
)
else
:
raise
"Unsupport norm type:"
+
default_norm_type
...
...
@@ -143,7 +158,8 @@ def seq_conv(input, channel, stride, filter, dilation=1, act=None):
stride
,
groups
=
input
.
shape
[
1
],
padding
=
(
filter
//
2
)
*
dilation
,
dilation
=
dilation
)
dilation
=
dilation
,
use_cudnn
=
depthwise_use_cudnn
)
input
=
bn
(
input
)
if
act
:
input
=
act
(
input
)
with
scope
(
'pointwise'
):
...
...
fluid/PaddleCV/deeplabv3+/train.py
浏览文件 @
c0b6a1d1
...
...
@@ -13,6 +13,7 @@ import reader
import
models
import
time
def
add_argument
(
name
,
type
,
default
,
help
):
parser
.
add_argument
(
'--'
+
name
,
default
=
default
,
type
=
type
,
help
=
help
)
...
...
@@ -32,15 +33,28 @@ def add_arguments():
add_argument
(
'dataset_path'
,
str
,
None
,
"Cityscape dataset path."
)
add_argument
(
'parallel'
,
bool
,
False
,
"using ParallelExecutor."
)
add_argument
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU or CPU."
)
add_argument
(
'num_classes'
,
int
,
19
,
"Number of classes."
)
def
load_model
():
myvars
=
[
x
for
x
in
tp
.
list_vars
()
if
isinstance
(
x
,
fluid
.
framework
.
Parameter
)
and
x
.
name
.
find
(
'logit'
)
==
-
1
]
if
args
.
init_weights_path
.
endswith
(
'/'
):
fluid
.
io
.
load_params
(
exe
,
dirname
=
args
.
init_weights_path
,
main_program
=
tp
)
if
args
.
num_classes
==
19
:
fluid
.
io
.
load_params
(
exe
,
dirname
=
args
.
init_weights_path
,
main_program
=
tp
)
else
:
fluid
.
io
.
load_vars
(
exe
,
dirname
=
args
.
init_weights_path
,
vars
=
myvars
)
else
:
fluid
.
io
.
load_params
(
exe
,
dirname
=
""
,
filename
=
args
.
init_weights_path
,
main_program
=
tp
)
if
args
.
num_classes
==
19
:
fluid
.
io
.
load_params
(
exe
,
dirname
=
args
.
init_weights_path
,
main_program
=
tp
)
else
:
fluid
.
io
.
load_vars
(
exe
,
dirname
=
""
,
filename
=
args
.
init_weights_path
,
vars
=
myvars
)
def
save_model
():
...
...
@@ -80,6 +94,7 @@ args = parser.parse_args()
models
.
clean
()
models
.
bn_momentum
=
0.9997
models
.
dropout_keep_prop
=
0.9
models
.
label_number
=
args
.
num_classes
deeplabv3p
=
models
.
deeplabv3p
sp
=
fluid
.
Program
()
...
...
@@ -89,7 +104,7 @@ batch_size = args.batch_size
image_shape
=
[
crop_size
,
crop_size
]
reader
.
default_config
[
'crop_size'
]
=
crop_size
reader
.
default_config
[
'shuffle'
]
=
True
num_classes
=
19
num_classes
=
args
.
num_classes
weight_decay
=
0.00004
base_lr
=
args
.
base_lr
...
...
@@ -120,7 +135,7 @@ with fluid.program_guard(tp, sp):
retv
=
opt
.
minimize
(
loss_mean
,
startup_program
=
sp
,
no_grad_set
=
no_grad_set
)
fluid
.
memory_optimize
(
tp
,
print_log
=
False
,
skip_opt_set
=
[
pred
.
name
,
loss_mean
.
name
]
,
level
=
1
)
tp
,
print_log
=
False
,
skip_opt_set
=
set
([
pred
.
name
,
loss_mean
.
name
])
,
level
=
1
)
place
=
fluid
.
CPUPlace
()
if
args
.
use_gpu
:
...
...
@@ -155,8 +170,8 @@ for i, imgs, labels, names in batches:
if
i
%
100
==
0
:
print
(
"Model is saved to"
,
args
.
save_weights_path
)
save_model
()
print
(
"step {:d}, loss: {:.6f}, step_time_cost: {:.3f}"
.
format
(
i
,
np
.
mean
(
retv
[
1
]),
end_time
-
prev_start_time
))
print
(
"step {:d}, loss: {:.6f}, step_time_cost: {:.3f}"
.
format
(
i
,
np
.
mean
(
retv
[
1
]),
end_time
-
prev_start_time
))
print
(
"Training done. Model is saved to"
,
args
.
save_weights_path
)
save_model
()
fluid/PaddleNLP/text_matching_on_quora/.run_ce.sh
0 → 100644
浏览文件 @
c0b6a1d1
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
text_matching_on_quora
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train_and_evaluate.py
--model_name
=
cdssmNet
--config
=
cdssm_base
--enable_ce
| python _ce.py
cudaid
=
${
text_matching_on_quora_m
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train_and_evaluate.py
--model_name
=
cdssmNet
--config
=
cdssm_base
--enable_ce
| python _ce.py
fluid/PaddleNLP/text_matching_on_quora/__init__.py
0 → 100644
浏览文件 @
c0b6a1d1
fluid/PaddleNLP/text_matching_on_quora/_ce.py
0 → 100644
浏览文件 @
c0b6a1d1
# this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
each_pass_duration_card1_kpi
=
DurationKpi
(
'each_pass_duration_card1'
,
0.05
,
0
,
actived
=
True
)
train_avg_cost_card1_kpi
=
CostKpi
(
'train_avg_cost_card1'
,
0.2
,
0
)
train_avg_acc_card1_kpi
=
CostKpi
(
'train_avg_acc_card1'
,
0.02
,
0
)
each_pass_duration_card4_kpi
=
DurationKpi
(
'each_pass_duration_card4'
,
0.05
,
0
,
actived
=
True
)
train_avg_cost_card4_kpi
=
CostKpi
(
'train_avg_cost_card4'
,
0.2
,
0
)
train_avg_acc_card4_kpi
=
CostKpi
(
'train_avg_acc_card4'
,
0.02
,
0
)
tracking_kpis
=
[
each_pass_duration_card1_kpi
,
train_avg_cost_card1_kpi
,
train_avg_acc_card1_kpi
,
each_pass_duration_card4_kpi
,
train_avg_cost_card4_kpi
,
train_avg_acc_card4_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/PaddleNLP/text_matching_on_quora/train_and_evaluate.py
浏览文件 @
c0b6a1d1
...
...
@@ -33,6 +33,7 @@ parser = argparse.ArgumentParser(description=__doc__)
parser
.
add_argument
(
'--model_name'
,
type
=
str
,
default
=
'cdssmNet'
,
help
=
"Which model to train"
)
parser
.
add_argument
(
'--config'
,
type
=
str
,
default
=
'cdssm_base'
,
help
=
"The global config setting"
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run the task with continuous evaluation logs.'
)
DATA_DIR
=
os
.
path
.
join
(
os
.
path
.
expanduser
(
'~'
),
'.cache/paddle/dataset'
)
...
...
@@ -139,6 +140,13 @@ def train_and_evaluate(train_reader,
else
:
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
q1
,
q2
,
mask1
,
mask2
,
label
],
place
=
place
)
# only for ce
args
=
parser
.
parse_args
()
if
args
.
enable_ce
:
SEED
=
102
fluid
.
default_startup_program
().
random_seed
=
SEED
fluid
.
default_main_program
().
random_seed
=
SEED
# logging param info
for
param
in
fluid
.
default_main_program
().
global_block
().
all_parameters
():
print
(
"param name: %s; param shape: %s"
%
(
param
.
name
,
param
.
shape
))
...
...
@@ -167,8 +175,10 @@ def train_and_evaluate(train_reader,
metric_type
=
global_config
.
metric_type
)
# start training
total_time
=
0.0
print
(
"[%s] Start Training"
%
time
.
asctime
(
time
.
localtime
(
time
.
time
())))
for
epoch_id
in
range
(
global_config
.
epoch_num
):
data_size
,
data_count
,
total_acc
,
total_cost
=
0
,
0
,
0.0
,
0.0
batch_id
=
0
epoch_begin_time
=
time
.
time
()
...
...
@@ -177,8 +187,8 @@ def train_and_evaluate(train_reader,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
cost
,
acc
])
data_size
=
len
(
data
)
total_acc
+=
data_size
*
avg_acc_np
total_cost
+=
data_size
*
avg_cost_np
total_acc
+=
data_size
*
avg_acc_np
[
0
]
total_cost
+=
data_size
*
avg_cost_np
[
0
]
data_count
+=
data_size
if
batch_id
%
100
==
0
:
print
(
"[%s] epoch_id: %d, batch_id: %d, cost: %f, acc: %f"
%
(
...
...
@@ -188,16 +198,30 @@ def train_and_evaluate(train_reader,
avg_cost_np
,
avg_acc_np
))
batch_id
+=
1
avg_cost
=
total_cost
/
data_count
avg_acc
=
total_acc
/
data_count
epoch_end_time
=
time
.
time
()
total_time
+=
epoch_end_time
-
epoch_begin_time
print
(
""
)
print
(
"[%s] epoch_id: %d, train_avg_cost: %f, train_avg_acc: %f, epoch_time_cost: %f"
%
(
time
.
asctime
(
time
.
localtime
(
time
.
time
())),
epoch_id
,
avg_cost
,
avg_acc
,
time
.
time
()
-
epoch_begin_time
))
# only for ce
if
epoch_id
==
global_config
.
epoch_num
-
1
and
args
.
enable_ce
:
#Note: The following logs are special for CE monitoring.
#Other situations do not need to care about these logs.
gpu_num
=
get_cards
(
args
)
print
(
"kpis
\t
each_pass_duration_card%s
\t
%s"
%
\
(
gpu_num
,
total_time
/
(
global_config
.
epoch_num
)))
print
(
"kpis
\t
train_avg_cost_card%s
\t
%s"
%
(
gpu_num
,
avg_cost
))
print
(
"kpis
\t
train_avg_acc_card%s
\t
%s"
%
(
gpu_num
,
avg_acc
))
epoch_model
=
global_config
.
save_dirname
+
"/"
+
"epoch"
+
str
(
epoch_id
)
fluid
.
io
.
save_inference_model
(
epoch_model
,
[
"question1"
,
"question2"
,
"label"
],
acc
,
exe
)
...
...
@@ -267,5 +291,15 @@ def main():
use_cuda
=
global_config
.
use_cuda
,
parallel
=
False
)
def
get_cards
(
args
):
if
args
.
enable_ce
:
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
else
:
return
args
.
num_devices
if
__name__
==
"__main__"
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录