Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
c0539d13
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c0539d13
编写于
8月 08, 2018
作者:
B
Bai Yifan
提交者:
GitHub
8月 08, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into ce
上级
9a31c4ff
c3bd1d30
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
1021 addition
and
51 deletion
+1021
-51
fluid/image_classification/caffe2fluid/examples/imagenet/compare.py
...e_classification/caffe2fluid/examples/imagenet/compare.py
+4
-5
fluid/image_classification/caffe2fluid/kaffe/layers.py
fluid/image_classification/caffe2fluid/kaffe/layers.py
+1
-0
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
.../image_classification/caffe2fluid/kaffe/paddle/network.py
+23
-4
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
...ge_classification/caffe2fluid/kaffe/paddle/transformer.py
+7
-0
fluid/language_model/.run_ce.sh
fluid/language_model/.run_ce.sh
+14
-0
fluid/language_model/_ce.py
fluid/language_model/_ce.py
+62
-0
fluid/language_model/train.py
fluid/language_model/train.py
+67
-30
fluid/language_model/utils.py
fluid/language_model/utils.py
+17
-6
fluid/neural_machine_translation/rnn_search/.run_ce.sh
fluid/neural_machine_translation/rnn_search/.run_ce.sh
+5
-0
fluid/neural_machine_translation/rnn_search/_ce.py
fluid/neural_machine_translation/rnn_search/_ce.py
+63
-0
fluid/neural_machine_translation/rnn_search/args.py
fluid/neural_machine_translation/rnn_search/args.py
+97
-0
fluid/neural_machine_translation/rnn_search/attention_model.py
.../neural_machine_translation/rnn_search/attention_model.py
+221
-0
fluid/neural_machine_translation/rnn_search/infer.py
fluid/neural_machine_translation/rnn_search/infer.py
+136
-0
fluid/neural_machine_translation/rnn_search/no_attention_model.py
...ural_machine_translation/rnn_search/no_attention_model.py
+127
-0
fluid/neural_machine_translation/rnn_search/train.py
fluid/neural_machine_translation/rnn_search/train.py
+170
-0
fluid/neural_machine_translation_rnn_search
fluid/neural_machine_translation_rnn_search
+1
-0
fluid/object_detection/_ce.py
fluid/object_detection/_ce.py
+6
-6
未找到文件。
fluid/image_classification/caffe2fluid/examples/imagenet/compare.py
浏览文件 @
c0539d13
...
...
@@ -24,15 +24,10 @@ def calc_diff(f1, f2):
#print d2.shape
#print d1[0, 0, 0:10, 0:10]
#print d2[0, 0, 0:10, 0:10]
#d1 = d1[:, :, 1:-2, 1:-2]
#d2 = d2[:, :, 1:-2, 1:-2]
d1
=
d1
.
flatten
()
d2
=
d2
.
flatten
()
#print d1[:10]
#print d2[:10]
d1_num
=
reduce
(
lambda
x
,
y
:
x
*
y
,
d1
.
shape
)
d2_num
=
reduce
(
lambda
x
,
y
:
x
*
y
,
d2
.
shape
)
if
d1_num
!=
d2_num
:
...
...
@@ -41,7 +36,11 @@ def calc_diff(f1, f2):
assert
(
d1_num
==
d2_num
),
"their shape is not consistent"
try
:
mask
=
np
.
abs
(
d1
)
>=
np
.
abs
(
d2
)
mask
=
mask
.
astype
(
'int32'
)
df
=
np
.
abs
(
d1
-
d2
)
df
=
df
/
(
1.0e-10
+
np
.
abs
(
d1
)
*
mask
+
np
.
abs
(
d2
)
*
(
1
-
mask
))
max_df
=
np
.
max
(
df
)
sq_df
=
np
.
mean
(
df
*
df
)
return
max_df
,
sq_df
...
...
fluid/image_classification/caffe2fluid/kaffe/layers.py
浏览文件 @
c0539d13
...
...
@@ -39,6 +39,7 @@ LAYER_DESCRIPTORS = {
'Pooling'
:
shape_pool
,
'Power'
:
shape_identity
,
'ReLU'
:
shape_identity
,
'PReLU'
:
shape_identity
,
'Scale'
:
shape_identity
,
'Sigmoid'
:
shape_identity
,
'SigmoidCrossEntropyLoss'
:
shape_scalar
,
...
...
fluid/image_classification/caffe2fluid/kaffe/paddle/network.py
浏览文件 @
c0539d13
...
...
@@ -240,10 +240,16 @@ class Network(object):
@
layer
def
relu
(
self
,
input
,
name
):
fluid
=
import_fluid
()
output
=
fluid
.
layers
.
relu
(
name
=
self
.
get_unique_output_name
(
name
,
'relu'
),
x
=
input
)
output
=
fluid
.
layers
.
relu
(
input
)
return
output
@
layer
def
prelu
(
self
,
input
,
channel_shared
,
name
):
#fluid = import_fluid()
#output = fluid.layers.relu(input)
#return output
raise
NotImplementedError
(
'prelu not implemented'
)
def
pool
(
self
,
pool_type
,
input
,
k_h
,
k_w
,
s_h
,
s_w
,
ceil_mode
,
padding
,
name
):
# Get the number of channels in the input
...
...
@@ -382,7 +388,8 @@ class Network(object):
name
,
scale_offset
=
True
,
eps
=
1e-5
,
relu
=
False
):
relu
=
False
,
relu_negative_slope
=
0.0
):
# NOTE: Currently, only inference is supported
fluid
=
import_fluid
()
prefix
=
name
+
'_'
...
...
@@ -392,6 +399,15 @@ class Network(object):
name
=
prefix
+
'offset'
)
mean_name
=
prefix
+
'mean'
variance_name
=
prefix
+
'variance'
leaky_relu
=
False
act
=
'relu'
if
relu
is
False
:
act
=
None
elif
relu_negative_slope
!=
0.0
:
leaky_relu
=
True
act
=
None
output
=
fluid
.
layers
.
batch_norm
(
name
=
self
.
get_unique_output_name
(
name
,
'batch_norm'
),
input
=
input
,
...
...
@@ -401,7 +417,10 @@ class Network(object):
moving_mean_name
=
mean_name
,
moving_variance_name
=
variance_name
,
epsilon
=
eps
,
act
=
'relu'
if
relu
is
True
else
None
)
act
=
act
)
if
leaky_relu
:
output
=
fluid
.
layers
.
leaky_relu
(
output
,
alpha
=
relu_negative_slope
)
return
output
...
...
fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py
浏览文件 @
c0539d13
...
...
@@ -112,6 +112,13 @@ class PaddleMapper(NodeMapper):
def
map_relu
(
self
,
node
):
return
PaddleNode
(
'relu'
)
def
map_prelu
(
self
,
node
):
channel_shared
=
getattr
(
node
.
parameters
,
'channel_shared'
,
False
)
return
PaddleNode
(
'prelu'
,
channel_shared
)
def
map_tanh
(
self
,
node
):
return
PaddleNode
(
'tanh'
)
def
map_pooling
(
self
,
node
):
pool_type
=
node
.
parameters
.
pool
if
pool_type
==
0
:
...
...
fluid/language_model/.run_ce.sh
0 → 100644
浏览文件 @
c0539d13
#!/bin/bash
export
MKL_NUM_THREADS
=
1
export
OMP_NUM_THREADS
=
1
cudaid
=
${
language_model
:
=0
}
# use 0-th card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
cudaid
=
${
language_model_m
:
=0,1,2,3
}
# use 0,1,2,3 card as default
export
CUDA_VISIBLE_DEVICES
=
$cudaid
FLAGS_benchmark
=
true
python train.py | python _ce.py
fluid/language_model/_ce.py
0 → 100644
浏览文件 @
c0539d13
# this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
from
kpi
import
DurationKpi
imikolov_20_avg_ppl_kpi
=
CostKpi
(
'imikolov_20_avg_ppl'
,
0.2
,
0
)
imikolov_20_pass_duration_kpi
=
DurationKpi
(
'imikolov_20_pass_duration'
,
0.02
,
0
,
actived
=
True
)
imikolov_20_avg_ppl_kpi_card4
=
CostKpi
(
'imikolov_20_avg_ppl_card4'
,
0.2
,
0
)
imikolov_20_pass_duration_kpi_card4
=
DurationKpi
(
'imikolov_20_pass_duration_card4'
,
0.03
,
0
,
actived
=
True
)
tracking_kpis
=
[
imikolov_20_avg_ppl_kpi
,
imikolov_20_pass_duration_kpi
,
imikolov_20_avg_ppl_kpi_card4
,
imikolov_20_pass_duration_kpi_card4
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
log_to_ce
(
log
)
fluid/language_model/train.py
浏览文件 @
c0539d13
import
os
import
sys
import
time
import
numpy
as
np
import
math
import
argparse
import
paddle.fluid
as
fluid
import
paddle
.v2
as
paddle
import
paddle
import
utils
SEED
=
102
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
"language_model benchmark."
)
parser
.
add_argument
(
'--enable_ce'
,
action
=
'store_true'
,
help
=
'If set, run
\
the task with continuous evaluation logs.'
)
args
=
parser
.
parse_args
()
return
args
def
network
(
src
,
dst
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
):
""" network definition """
...
...
@@ -63,31 +77,26 @@ def train(train_reader,
init_low_bound
=-
0.04
,
init_high_bound
=
0.04
):
""" train network """
args
=
parse_args
()
if
args
.
enable_ce
:
# random seed must set before configuring the network.
fluid
.
default_startup_program
().
random_seed
=
SEED
vocab_size
=
len
(
vocab
)
#Input data
src_wordseq
=
fluid
.
layers
.
data
(
name
=
"src_wordseq"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
dst_wordseq
=
fluid
.
layers
.
data
(
name
=
"dst_wordseq"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
# Train program
avg_cost
=
None
if
not
parallel
:
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
else
:
places
=
fluid
.
layers
.
get_places
()
pd
=
fluid
.
layers
.
ParallelDo
(
places
)
with
pd
.
do
():
cost
=
network
(
pd
.
read_input
(
src_wordseq
),
pd
.
read_input
(
dst_wordseq
),
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
pd
.
write_output
(
cost
)
cost
=
pd
()
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
cost
=
network
(
src_wordseq
,
dst_wordseq
,
vocab_size
,
hid_size
,
init_low_bound
,
init_high_bound
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Optimization to minimize lost
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
base_lr
,
...
...
@@ -96,39 +105,56 @@ def train(train_reader,
staircase
=
True
))
sgd_optimizer
.
minimize
(
avg_cost
)
# Initialize executor
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
total_time
=
0.0
fetch_list
=
[
avg_cost
.
name
]
for
pass_idx
in
xrange
(
pass_num
):
epoch_idx
=
pass_idx
+
1
print
"epoch_%d start"
%
epoch_idx
t0
=
time
.
time
()
i
=
0
newest_ppl
=
0
for
data
in
train_reader
():
i
+=
1
lod_src_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
lod_dst_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
ret_avg_cost
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
"dst_wordseq"
:
lod_dst_wordseq
},
fetch_list
=
[
avg_cost
],
use_program_cache
=
True
)
avg_ppl
=
math
.
exp
(
ret_avg_cost
[
0
])
ret_avg_cost
=
train_exe
.
run
(
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
"dst_wordseq"
:
lod_dst_wordseq
},
fetch_list
=
fetch_list
)
avg_ppl
=
np
.
exp
(
ret_avg_cost
[
0
])
newest_ppl
=
np
.
mean
(
avg_ppl
)
if
i
%
100
==
0
:
print
"step:%d ppl:%.3f"
%
(
i
,
avg
_ppl
)
print
"step:%d ppl:%.3f"
%
(
i
,
newest
_ppl
)
t1
=
time
.
time
()
total_time
+=
t1
-
t0
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
if
pass_idx
==
pass_num
-
1
and
args
.
enable_ce
:
#Note: The following logs are special for CE monitoring.
#Other situations do not need to care about these logs.
gpu_num
=
get_cards
()
if
gpu_num
==
1
:
print
(
"kpis imikolov_20_pass_duration %s"
%
(
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl %s"
%
newest_ppl
)
else
:
print
(
"kpis imikolov_20_pass_duration_card%s %s"
%
\
(
gpu_num
,
total_time
/
epoch_idx
))
print
(
"kpis imikolov_20_avg_ppl_card%s %s"
%
(
gpu_num
,
newest_ppl
))
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
feed_var_names
=
[
"src_wordseq"
,
"dst_wordseq"
]
fetch_vars
=
[
avg_cost
]
...
...
@@ -138,11 +164,22 @@ def train(train_reader,
print
(
"finish training"
)
def
get_cards
(
enable_ce
):
if
enable_ce
:
cards
=
os
.
environ
.
get
(
'CUDA_VISIBLE_DEVICES'
)
num
=
len
(
cards
.
split
(
","
))
return
num
else
:
return
fluid
.
core
.
get_cuda_device_count
()
def
train_net
():
""" do training """
batch_size
=
20
args
=
parse_args
()
vocab
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
batch_size
=
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
)
batch_size
=
batch_size
*
get_cards
(
args
.
enable_ce
),
buffer_size
=
1000
,
\
word_freq_threshold
=
0
,
enable_ce
=
args
.
enable_ce
)
train
(
train_reader
=
train_reader
,
vocab
=
vocab
,
...
...
@@ -152,7 +189,7 @@ def train_net():
batch_size
=
batch_size
,
pass_num
=
12
,
use_cuda
=
True
,
parallel
=
Fals
e
,
parallel
=
Tru
e
,
model_dir
=
"model"
,
init_low_bound
=-
0.1
,
init_high_bound
=
0.1
)
...
...
fluid/language_model/utils.py
浏览文件 @
c0539d13
...
...
@@ -3,7 +3,7 @@ import time
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle
.v2
as
paddle
import
paddle
def
to_lodtensor
(
data
,
place
):
...
...
@@ -22,17 +22,28 @@ def to_lodtensor(data, place):
return
res
def
prepare_data
(
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
):
def
prepare_data
(
batch_size
,
buffer_size
=
1000
,
word_freq_threshold
=
0
,
enable_ce
=
False
):
""" prepare the English Pann Treebank (PTB) data """
vocab
=
paddle
.
dataset
.
imikolov
.
build_dict
(
word_freq_threshold
)
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
if
enable_ce
:
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
buf_size
=
buffer_size
),
batch_size
)
batch_size
)
else
:
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imikolov
.
train
(
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
buf_size
=
buffer_size
),
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
test
(
vocab
,
buffer_size
,
data_type
=
paddle
.
dataset
.
imikolov
.
DataType
.
SEQ
),
...
...
fluid/neural_machine_translation/rnn_search/.run_ce.sh
0 → 100755
浏览文件 @
c0539d13
###!/bin/bash
####This file is only used for continuous evaluation.
model_file
=
'train.py'
python
$model_file
--pass_num
1
--learning_rate
0.001
--save_interval
10
--enable_ce
| python _ce.py
fluid/neural_machine_translation/rnn_search/_ce.py
0 → 100644
浏览文件 @
c0539d13
####this file is only used for continuous evaluation test!
import
os
import
sys
sys
.
path
.
append
(
os
.
environ
[
'ceroot'
])
from
kpi
import
CostKpi
,
DurationKpi
,
AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
0
,
actived
=
True
)
test_cost_kpi
=
CostKpi
(
'test_cost'
,
0.005
,
0
,
actived
=
True
)
train_duration_kpi
=
DurationKpi
(
'train_duration'
,
0.06
,
0
,
actived
=
True
)
tracking_kpis
=
[
train_cost_kpi
,
test_cost_kpi
,
train_duration_kpi
,
]
def
parse_log
(
log
):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost
\t
1.0
test_cost
\t
1.0
train_cost
\t
1.0
train_cost
\t
1.0
train_acc
\t
1.2
"
'''
for
line
in
log
.
split
(
'
\n
'
):
fs
=
line
.
strip
().
split
(
'
\t
'
)
print
(
fs
)
if
len
(
fs
)
==
3
and
fs
[
0
]
==
'kpis'
:
print
(
"-----%s"
%
fs
)
kpi_name
=
fs
[
1
]
kpi_value
=
float
(
fs
[
2
])
yield
kpi_name
,
kpi_value
def
log_to_ce
(
log
):
kpi_tracker
=
{}
for
kpi
in
tracking_kpis
:
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
if
__name__
==
'__main__'
:
log
=
sys
.
stdin
.
read
()
print
(
"*****"
)
print
(
log
)
print
(
"****"
)
log_to_ce
(
log
)
fluid/neural_machine_translation/rnn_search/args.py
0 → 100644
浏览文件 @
c0539d13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
argparse
import
distutils.util
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--embedding_dim"
,
type
=
int
,
default
=
512
,
help
=
"The dimension of embedding table. (default: %(default)d)"
)
parser
.
add_argument
(
"--encoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of encoder bi-rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--decoder_size"
,
type
=
int
,
default
=
512
,
help
=
"The size of decoder rnn unit. (default: %(default)d)"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"The sequence number of a mini-batch data. (default: %(default)d)"
)
parser
.
add_argument
(
"--dict_size"
,
type
=
int
,
default
=
30000
,
help
=
"The dictionary capacity. Dictionaries of source sequence and "
"target dictionary have same capacity. (default: %(default)d)"
)
parser
.
add_argument
(
"--pass_num"
,
type
=
int
,
default
=
5
,
help
=
"The pass number to train. (default: %(default)d)"
)
parser
.
add_argument
(
"--learning_rate"
,
type
=
float
,
default
=
0.01
,
help
=
"Learning rate used to train the model. (default: %(default)f)"
)
parser
.
add_argument
(
"--no_attention"
,
action
=
'store_true'
,
help
=
"If set, run no attention model instead of attention model."
)
parser
.
add_argument
(
"--beam_size"
,
type
=
int
,
default
=
3
,
help
=
"The width for beam searching. (default: %(default)d)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
distutils
.
util
.
strtobool
,
default
=
True
,
help
=
"Whether to use gpu. (default: %(default)d)"
)
parser
.
add_argument
(
"--max_length"
,
type
=
int
,
default
=
50
,
help
=
"The maximum length of sequence when doing generation. "
"(default: %(default)d)"
)
parser
.
add_argument
(
"--save_dir"
,
type
=
str
,
default
=
"model"
,
help
=
"Specify the path to save trained models."
)
parser
.
add_argument
(
"--save_interval"
,
type
=
int
,
default
=
1
,
help
=
"Save the trained model every n passes."
"(default: %(default)d)"
)
parser
.
add_argument
(
"--enable_ce"
,
action
=
'store_true'
,
help
=
"If set, run the task with continuous evaluation logs."
)
args
=
parser
.
parse_args
()
return
args
fluid/neural_machine_translation/rnn_search/attention_model.py
0 → 100644
浏览文件 @
c0539d13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.contrib.decoder.beam_search_decoder
import
*
def
lstm_step
(
x_t
,
hidden_t_prev
,
cell_t_prev
,
size
):
def
linear
(
inputs
):
return
fluid
.
layers
.
fc
(
input
=
inputs
,
size
=
size
,
bias_attr
=
True
)
forget_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
input_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
output_gate
=
fluid
.
layers
.
sigmoid
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_tilde
=
fluid
.
layers
.
tanh
(
x
=
linear
([
hidden_t_prev
,
x_t
]))
cell_t
=
fluid
.
layers
.
sums
(
input
=
[
fluid
.
layers
.
elementwise_mul
(
x
=
forget_gate
,
y
=
cell_t_prev
),
fluid
.
layers
.
elementwise_mul
(
x
=
input_gate
,
y
=
cell_tilde
)
])
hidden_t
=
fluid
.
layers
.
elementwise_mul
(
x
=
output_gate
,
y
=
fluid
.
layers
.
tanh
(
x
=
cell_t
))
return
hidden_t
,
cell_t
def
seq_to_seq_net
(
embedding_dim
,
encoder_size
,
decoder_size
,
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
,
max_length
):
"""Construct a seq2seq network."""
def
bi_lstm_encoder
(
input_seq
,
gate_size
):
# A bi-directional lstm encoder implementation.
# Linear transformation part for input gate, output gate, forget gate
# and cell activation vectors need be done outside of dynamic_lstm.
# So the output size is 4 times of gate_size.
input_forward_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
'tanh'
,
bias_attr
=
False
)
forward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_forward_proj
,
size
=
gate_size
*
4
,
use_peepholes
=
False
)
input_reversed_proj
=
fluid
.
layers
.
fc
(
input
=
input_seq
,
size
=
gate_size
*
4
,
act
=
'tanh'
,
bias_attr
=
False
)
reversed
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
input_reversed_proj
,
size
=
gate_size
*
4
,
is_reverse
=
True
,
use_peepholes
=
False
)
return
forward
,
reversed
# The encoding process. Encodes the input words into tensors.
src_word_idx
=
fluid
.
layers
.
data
(
name
=
'source_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
fluid
.
layers
.
embedding
(
input
=
src_word_idx
,
size
=
[
source_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
src_forward
,
src_reversed
=
bi_lstm_encoder
(
input_seq
=
src_embedding
,
gate_size
=
encoder_size
)
encoded_vector
=
fluid
.
layers
.
concat
(
input
=
[
src_forward
,
src_reversed
],
axis
=
1
)
encoded_proj
=
fluid
.
layers
.
fc
(
input
=
encoded_vector
,
size
=
decoder_size
,
bias_attr
=
False
)
backward_first
=
fluid
.
layers
.
sequence_pool
(
input
=
src_reversed
,
pool_type
=
'first'
)
decoder_boot
=
fluid
.
layers
.
fc
(
input
=
backward_first
,
size
=
decoder_size
,
bias_attr
=
False
,
act
=
'tanh'
)
cell_init
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
decoder_boot
,
value
=
0.0
,
shape
=
[
-
1
,
decoder_size
],
dtype
=
'float32'
)
cell_init
.
stop_gradient
=
False
# Create a RNN state cell by providing the input and hidden states, and
# specifies the hidden state as output.
h
=
InitState
(
init
=
decoder_boot
,
need_reorder
=
True
)
c
=
InitState
(
init
=
cell_init
)
state_cell
=
StateCell
(
inputs
=
{
'x'
:
None
,
'encoder_vec'
:
None
,
'encoder_proj'
:
None
},
states
=
{
'h'
:
h
,
'c'
:
c
},
out_state
=
'h'
)
def
simple_attention
(
encoder_vec
,
encoder_proj
,
decoder_state
):
# The implementation of simple attention model
decoder_state_proj
=
fluid
.
layers
.
fc
(
input
=
decoder_state
,
size
=
decoder_size
,
bias_attr
=
False
)
decoder_state_expand
=
fluid
.
layers
.
sequence_expand
(
x
=
decoder_state_proj
,
y
=
encoder_proj
)
# concated lod should inherit from encoder_proj
concated
=
fluid
.
layers
.
concat
(
input
=
[
encoder_proj
,
decoder_state_expand
],
axis
=
1
)
attention_weights
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
1
,
bias_attr
=
False
)
attention_weights
=
fluid
.
layers
.
sequence_softmax
(
input
=
attention_weights
)
weigths_reshape
=
fluid
.
layers
.
reshape
(
x
=
attention_weights
,
shape
=
[
-
1
])
scaled
=
fluid
.
layers
.
elementwise_mul
(
x
=
encoder_vec
,
y
=
weigths_reshape
,
axis
=
0
)
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
return
context
@
state_cell
.
state_updater
def
state_updater
(
state_cell
):
# Define the updater of RNN state cell
current_word
=
state_cell
.
get_input
(
'x'
)
encoder_vec
=
state_cell
.
get_input
(
'encoder_vec'
)
encoder_proj
=
state_cell
.
get_input
(
'encoder_proj'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
prev_c
=
state_cell
.
get_state
(
'c'
)
context
=
simple_attention
(
encoder_vec
,
encoder_proj
,
prev_h
)
decoder_inputs
=
fluid
.
layers
.
concat
(
input
=
[
context
,
current_word
],
axis
=
1
)
h
,
c
=
lstm_step
(
decoder_inputs
,
prev_h
,
prev_c
,
decoder_size
)
state_cell
.
set_state
(
'h'
,
h
)
state_cell
.
set_state
(
'c'
,
c
)
# Define the decoding process
if
not
is_generating
:
# Training process
trg_word_idx
=
fluid
.
layers
.
data
(
name
=
'target_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
fluid
.
layers
.
embedding
(
input
=
trg_word_idx
,
size
=
[
target_dict_dim
,
embedding_dim
],
dtype
=
'float32'
)
# A decoder for training
decoder
=
TrainingDecoder
(
state_cell
)
with
decoder
.
block
():
current_word
=
decoder
.
step_input
(
trg_embedding
)
encoder_vec
=
decoder
.
static_input
(
encoded_vector
)
encoder_proj
=
decoder
.
static_input
(
encoded_proj
)
decoder
.
state_cell
.
compute_state
(
inputs
=
{
'x'
:
current_word
,
'encoder_vec'
:
encoder_vec
,
'encoder_proj'
:
encoder_proj
})
h
=
decoder
.
state_cell
.
get_state
(
'h'
)
decoder
.
state_cell
.
update_states
()
out
=
fluid
.
layers
.
fc
(
input
=
h
,
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
'softmax'
)
decoder
.
output
(
out
)
label
=
fluid
.
layers
.
data
(
name
=
'label_sequence'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
decoder
(),
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
feeding_list
=
[
"source_sequence"
,
"target_sequence"
,
"label_sequence"
]
return
avg_cost
,
feeding_list
else
:
# Inference
init_ids
=
fluid
.
layers
.
data
(
name
=
"init_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
2
)
init_scores
=
fluid
.
layers
.
data
(
name
=
"init_scores"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
2
)
# A beam search decoder
decoder
=
BeamSearchDecoder
(
state_cell
=
state_cell
,
init_ids
=
init_ids
,
init_scores
=
init_scores
,
target_dict_dim
=
target_dict_dim
,
word_dim
=
embedding_dim
,
input_var_dict
=
{
'encoder_vec'
:
encoded_vector
,
'encoder_proj'
:
encoded_proj
},
topk_size
=
50
,
sparse_emb
=
True
,
max_len
=
max_length
,
beam_size
=
beam_size
,
end_id
=
1
,
name
=
None
)
decoder
.
decode
()
translation_ids
,
translation_scores
=
decoder
()
feeding_list
=
[
"source_sequence"
]
return
translation_ids
,
translation_scores
,
feeding_list
fluid/neural_machine_translation/rnn_search/infer.py
0 → 100644
浏览文件 @
c0539d13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
os
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.contrib.decoder.beam_search_decoder
import
*
from
args
import
*
import
attention_model
import
no_attention_model
def
infer
():
args
=
parse_args
()
# Inference
if
args
.
no_attention
:
translation_ids
,
translation_scores
,
feed_order
=
\
no_attention_model
.
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
True
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
else
:
translation_ids
,
translation_scores
,
feed_order
=
\
attention_model
.
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
True
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
test_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
place
=
core
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
model_path
=
os
.
path
.
join
(
args
.
save_dir
,
str
(
args
.
pass_num
))
fluid
.
io
.
load_persistables
(
executor
=
exe
,
dirname
=
model_path
,
main_program
=
framework
.
default_main_program
())
src_dict
,
trg_dict
=
paddle
.
dataset
.
wmt14
.
get_dict
(
args
.
dict_size
)
feed_list
=
[
framework
.
default_main_program
().
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
[
0
:
1
]
]
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
for
batch_id
,
data
in
enumerate
(
test_batch_generator
()):
# The value of batch_size may vary in the last batch
batch_size
=
len
(
data
)
# Setup initial ids and scores lod tensor
init_ids_data
=
np
.
array
([
0
for
_
in
range
(
batch_size
)],
dtype
=
'int64'
)
init_scores_data
=
np
.
array
(
[
1.
for
_
in
range
(
batch_size
)],
dtype
=
'float32'
)
init_ids_data
=
init_ids_data
.
reshape
((
batch_size
,
1
))
init_scores_data
=
init_scores_data
.
reshape
((
batch_size
,
1
))
init_recursive_seq_lens
=
[
1
]
*
batch_size
init_recursive_seq_lens
=
[
init_recursive_seq_lens
,
init_recursive_seq_lens
]
init_ids
=
fluid
.
create_lod_tensor
(
init_ids_data
,
init_recursive_seq_lens
,
place
)
init_scores
=
fluid
.
create_lod_tensor
(
init_scores_data
,
init_recursive_seq_lens
,
place
)
# Feed dict for inference
feed_dict
=
feeder
.
feed
(
map
(
lambda
x
:
[
x
[
0
]],
data
))
feed_dict
[
'init_ids'
]
=
init_ids
feed_dict
[
'init_scores'
]
=
init_scores
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
feed_dict
,
fetch_list
=
[
translation_ids
,
translation_scores
],
return_numpy
=
False
)
# Split the output words by lod levels
lod_level_1
=
fetch_outs
[
0
].
lod
()[
1
]
token_array
=
np
.
array
(
fetch_outs
[
0
])
result
=
[]
for
i
in
xrange
(
len
(
lod_level_1
)
-
1
):
sentence_list
=
[
trg_dict
[
token
]
for
token
in
token_array
[
lod_level_1
[
i
]:
lod_level_1
[
i
+
1
]]
]
sentence
=
" "
.
join
(
sentence_list
[
1
:
-
1
])
result
.
append
(
sentence
)
lod_level_0
=
fetch_outs
[
0
].
lod
()[
0
]
paragraphs
=
[
result
[
lod_level_0
[
i
]:
lod_level_0
[
i
+
1
]]
for
i
in
xrange
(
len
(
lod_level_0
)
-
1
)
]
for
paragraph
in
paragraphs
:
print
(
paragraph
)
if
__name__
==
'__main__'
:
infer
()
fluid/neural_machine_translation/rnn_search/no_attention_model.py
0 → 100644
浏览文件 @
c0539d13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid.layers
as
layers
from
paddle.fluid.contrib.decoder.beam_search_decoder
import
*
def
seq_to_seq_net
(
embedding_dim
,
encoder_size
,
decoder_size
,
source_dict_dim
,
target_dict_dim
,
is_generating
,
beam_size
,
max_length
):
def
encoder
():
# Encoder implementation of RNN translation
src_word
=
layers
.
data
(
name
=
"src_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
src_embedding
=
layers
.
embedding
(
input
=
src_word
,
size
=
[
source_dict_dim
,
embedding_dim
],
dtype
=
'float32'
,
is_sparse
=
True
)
fc1
=
layers
.
fc
(
input
=
src_embedding
,
size
=
encoder_size
*
4
,
act
=
'tanh'
)
lstm_hidden0
,
lstm_0
=
layers
.
dynamic_lstm
(
input
=
fc1
,
size
=
encoder_size
*
4
)
encoder_out
=
layers
.
sequence_last_step
(
input
=
lstm_hidden0
)
return
encoder_out
def
decoder_state_cell
(
context
):
# Decoder state cell, specifies the hidden state variable and its updater
h
=
InitState
(
init
=
context
,
need_reorder
=
True
)
state_cell
=
StateCell
(
inputs
=
{
'x'
:
None
},
states
=
{
'h'
:
h
},
out_state
=
'h'
)
@
state_cell
.
state_updater
def
updater
(
state_cell
):
current_word
=
state_cell
.
get_input
(
'x'
)
prev_h
=
state_cell
.
get_state
(
'h'
)
# make sure lod of h heritted from prev_h
h
=
layers
.
fc
(
input
=
[
prev_h
,
current_word
],
size
=
decoder_size
,
act
=
'tanh'
)
state_cell
.
set_state
(
'h'
,
h
)
return
state_cell
def
decoder_train
(
state_cell
):
# Decoder for training implementation of RNN translation
trg_word
=
layers
.
data
(
name
=
"target_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
trg_embedding
=
layers
.
embedding
(
input
=
trg_word
,
size
=
[
target_dict_dim
,
embedding_dim
],
dtype
=
'float32'
,
is_sparse
=
True
)
# A training decoder
decoder
=
TrainingDecoder
(
state_cell
)
# Define the computation in each RNN step done by decoder
with
decoder
.
block
():
current_word
=
decoder
.
step_input
(
trg_embedding
)
decoder
.
state_cell
.
compute_state
(
inputs
=
{
'x'
:
current_word
})
current_score
=
layers
.
fc
(
input
=
decoder
.
state_cell
.
get_state
(
'h'
),
size
=
target_dict_dim
,
act
=
'softmax'
)
decoder
.
state_cell
.
update_states
()
decoder
.
output
(
current_score
)
return
decoder
()
def
decoder_infer
(
state_cell
):
# Decoder for inference implementation
init_ids
=
layers
.
data
(
name
=
"init_ids"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
2
)
init_scores
=
layers
.
data
(
name
=
"init_scores"
,
shape
=
[
1
],
dtype
=
"float32"
,
lod_level
=
2
)
# A beam search decoder for inference
decoder
=
BeamSearchDecoder
(
state_cell
=
state_cell
,
init_ids
=
init_ids
,
init_scores
=
init_scores
,
target_dict_dim
=
target_dict_dim
,
word_dim
=
embedding_dim
,
input_var_dict
=
{},
topk_size
=
50
,
sparse_emb
=
True
,
max_len
=
max_length
,
beam_size
=
beam_size
,
end_id
=
1
,
name
=
None
)
decoder
.
decode
()
translation_ids
,
translation_scores
=
decoder
()
return
translation_ids
,
translation_scores
context
=
encoder
()
state_cell
=
decoder_state_cell
(
context
)
if
not
is_generating
:
label
=
layers
.
data
(
name
=
"target_next_word"
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
rnn_out
=
decoder_train
(
state_cell
)
cost
=
layers
.
cross_entropy
(
input
=
rnn_out
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
feeding_list
=
[
'src_word'
,
'target_word'
,
'target_next_word'
]
return
avg_cost
,
feeding_list
else
:
translation_ids
,
translation_scores
=
decoder_infer
(
state_cell
)
feeding_list
=
[
'src_word'
]
return
translation_ids
,
translation_scores
,
feeding_list
fluid/neural_machine_translation/rnn_search/train.py
0 → 100644
浏览文件 @
c0539d13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
time
import
os
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.fluid.framework
as
framework
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.contrib.decoder.beam_search_decoder
import
*
from
args
import
*
import
attention_model
import
no_attention_model
def
train
():
args
=
parse_args
()
if
args
.
enable_ce
:
framework
.
default_startup_program
().
random_seed
=
111
# Training process
if
args
.
no_attention
:
avg_cost
,
feed_order
=
no_attention_model
.
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
False
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
else
:
avg_cost
,
feed_order
=
attention_model
.
seq_to_seq_net
(
args
.
embedding_dim
,
args
.
encoder_size
,
args
.
decoder_size
,
args
.
dict_size
,
args
.
dict_size
,
False
,
beam_size
=
args
.
beam_size
,
max_length
=
args
.
max_length
)
# clone from default main program and use it as the validation program
main_program
=
fluid
.
default_main_program
()
inference_program
=
fluid
.
default_main_program
().
clone
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
learning_rate
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-5
))
optimizer
.
minimize
(
avg_cost
)
# Disable shuffle for Continuous Evaluation only
if
not
args
.
enable_ce
:
train_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
train
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
test_batch_generator
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
buf_size
=
1000
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
else
:
train_batch_generator
=
paddle
.
batch
(
paddle
.
dataset
.
wmt14
.
train
(
args
.
dict_size
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
test_batch_generator
=
paddle
.
batch
(
paddle
.
dataset
.
wmt14
.
test
(
args
.
dict_size
),
batch_size
=
args
.
batch_size
,
drop_last
=
False
)
place
=
core
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
core
.
CPUPlace
()
exe
=
Executor
(
place
)
exe
.
run
(
framework
.
default_startup_program
())
feed_list
=
[
main_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
fluid
.
DataFeeder
(
feed_list
,
place
)
def
validation
():
# Use test set as validation each pass
total_loss
=
0.0
count
=
0
val_feed_list
=
[
inference_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
val_feeder
=
fluid
.
DataFeeder
(
val_feed_list
,
place
)
for
batch_id
,
data
in
enumerate
(
test_batch_generator
()):
val_fetch_outs
=
exe
.
run
(
inference_program
,
feed
=
val_feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
],
return_numpy
=
False
)
total_loss
+=
np
.
array
(
val_fetch_outs
[
0
])[
0
]
count
+=
1
return
total_loss
/
count
for
pass_id
in
range
(
1
,
args
.
pass_num
+
1
):
pass_start_time
=
time
.
time
()
words_seen
=
0
for
batch_id
,
data
in
enumerate
(
train_batch_generator
()):
words_seen
+=
len
(
data
)
*
2
fetch_outs
=
exe
.
run
(
framework
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_train
=
np
.
array
(
fetch_outs
[
0
])
print
(
'pass_id=%d, batch_id=%d, train_loss: %f'
%
(
pass_id
,
batch_id
,
avg_cost_train
))
# This is for continuous evaluation only
if
args
.
enable_ce
and
batch_id
>=
100
:
break
pass_end_time
=
time
.
time
()
test_loss
=
validation
()
time_consumed
=
pass_end_time
-
pass_start_time
words_per_sec
=
words_seen
/
time_consumed
print
(
"pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f"
%
(
pass_id
,
test_loss
,
words_per_sec
,
time_consumed
))
# This log is for continuous evaluation only
if
args
.
enable_ce
:
print
(
"kpis
\t
train_cost
\t
%f"
%
avg_cost_train
)
print
(
"kpis
\t
test_cost
\t
%f"
%
test_loss
)
print
(
"kpis
\t
train_duration
\t
%f"
%
time_consumed
)
if
pass_id
%
args
.
save_interval
==
0
:
model_path
=
os
.
path
.
join
(
args
.
save_dir
,
str
(
pass_id
))
if
not
os
.
path
.
isdir
(
model_path
):
os
.
makedirs
(
model_path
)
fluid
.
io
.
save_persistables
(
executor
=
exe
,
dirname
=
model_path
,
main_program
=
framework
.
default_main_program
())
if
__name__
==
'__main__'
:
train
()
fluid/neural_machine_translation_rnn_search
0 → 120000
浏览文件 @
c0539d13
./neural_machine_translation/rnn_search
\ No newline at end of file
fluid/object_detection/_ce.py
浏览文件 @
c0539d13
...
...
@@ -7,12 +7,12 @@ from kpi import CostKpi, DurationKpi, AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.01
,
actived
=
True
)
train_speed_kpi
=
AccKpi
(
'train_speed'
,
0.2
,
actived
=
True
)
train_cost_card4_kpi
=
CostKpi
(
'train_cost_card4'
,
0.02
,
actived
=
True
)
test_acc_card4_kpi
=
AccKpi
(
'test_acc_card4'
,
0.01
,
actived
=
True
)
train_speed_card4_kpi
=
AccKpi
(
'train_speed_card4'
,
0.2
,
actived
=
True
)
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.02
,
0
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.01
,
0
,
actived
=
True
)
train_speed_kpi
=
AccKpi
(
'train_speed'
,
0.2
,
0
,
actived
=
True
)
train_cost_card4_kpi
=
CostKpi
(
'train_cost_card4'
,
0.02
,
0
,
actived
=
True
)
test_acc_card4_kpi
=
AccKpi
(
'test_acc_card4'
,
0.01
,
0
,
actived
=
True
)
train_speed_card4_kpi
=
AccKpi
(
'train_speed_card4'
,
0.2
,
0
,
actived
=
True
)
tracking_kpis
=
[
train_cost_kpi
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录