Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bff7fbe3
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bff7fbe3
编写于
1月 24, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Restruct code.
1. Split data reader and train script. 2. Wrapper some function
上级
4e37cccb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
142 addition
and
69 deletion
+142
-69
fluid/ocr_ctc/dummy_reader.py
fluid/ocr_ctc/dummy_reader.py
+26
-0
fluid/ocr_ctc/train.py
fluid/ocr_ctc/train.py
+116
-69
未找到文件。
fluid/ocr_ctc/dummy_reader.py
0 → 100644
浏览文件 @
bff7fbe3
import
numpy
as
np
DATA_SHAPE
=
[
1
,
512
,
512
]
def
_read_creater
(
num_sample
=
1024
,
num_class
=
20
,
min_seq_len
=
1
,
max_seq_len
=
10
):
def
reader
():
for
i
in
range
(
num_sample
):
sequence_len
=
np
.
random
.
randint
(
min_seq_len
,
max_seq_len
)
x
=
np
.
random
.
uniform
(
0.1
,
1
,
DATA_SHAPE
).
astype
(
"float32"
)
y
=
np
.
random
.
randint
(
0
,
num_class
+
1
,
[
sequence_len
]).
astype
(
"int32"
)
yield
x
,
y
return
reader
def
train
(
num_sample
=
16
):
return
_read_creater
(
num_sample
=
num_sample
)
def
test
(
num_sample
=
16
):
return
_read_creater
(
num_sample
=
num_sample
)
def
data_shape
():
return
DATA_SHAPE
fluid/ocr_ctc/train.py
浏览文件 @
bff7fbe3
...
...
@@ -12,22 +12,29 @@
#See the License for the specific language governing permissions and
#limitations under the License.
import
sys
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
from
paddle.v2.fluid
import
core
import
numpy
as
np
import
dummy_reader
def
random_reader
(
num_class
):
def
reader
():
sequence_len
=
np
.
random
.
randint
(
5
,
10
)
yield
np
.
random
.
uniform
(
0.1
,
1
,
[
1
,
512
,
512
]),
np
.
random
.
randint
(
0
,
num_class
+
1
,
[
sequence_len
])
return
reader
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int32"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
ocr_conv
(
input
,
num
,
with_bn
):
def
ocr_conv
(
input
,
num
,
with_bn
,
param_attrs
):
assert
(
num
%
4
==
0
)
def
conv_block
(
input
,
filter_size
,
group_size
,
with_bn
):
...
...
@@ -40,7 +47,8 @@ def ocr_conv(input, num, with_bn):
conv_filter_size
=
3
,
conv_act
=
'relu'
,
conv_with_batchnorm
=
with_bn
,
pool_type
=
'max'
)
pool_type
=
'max'
,
param_attr
=
param_attrs
)
conv1
=
conv_block
(
input
,
16
,
(
num
/
4
),
with_bn
)
conv2
=
conv_block
(
conv1
,
32
,
(
num
/
4
),
with_bn
)
...
...
@@ -49,62 +57,101 @@ def ocr_conv(input, num, with_bn):
return
conv4
num_classes
=
9054
data_shape
=
[
1
,
512
,
512
]
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# encoder part
conv_features
=
ocr_conv
(
images
,
8
,
True
)
sliced_feature
=
fluid
.
layers
.
im2sequence
(
input
=
conv_features
,
stride
=
[
1
,
1
],
filter_size
=
[
1
,
3
])
# TODO(wanghaoshuang): repaced by GRU
gru_forward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
sliced_feature
,
size
=
3
*
128
)
gru_backward
,
_
=
fluid
.
layers
.
dynamic_lstm
(
input
=
sliced_feature
,
size
=
3
*
128
,
is_reverse
=
True
)
fc_out
=
fluid
.
layers
.
fc
(
input
=
[
gru_forward
,
gru_backward
],
size
=
num_classes
+
1
)
cost
=
fluid
.
layers
.
warpctc
(
input
=
fc_out
,
label
=
label
,
size
=
num_classes
+
1
,
blank
=
num_classes
,
norm_by_times
=
True
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# TODO(wanghaoshuang): set clipping
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
((
1.0e-3
)
/
16
),
momentum
=
0.9
)
opts
=
optimizer
.
minimize
(
cost
)
decoded_out
=
fluid
.
layers
.
ctc_greedy_decoder
(
input
=
fc_out
,
blank
=
num_classes
)
error_evaluator
=
fluid
.
evaluator
.
EditDistance
(
input
=
decoded_out
,
label
=
label
)
BATCH_SIZE
=
16
PASS_NUM
=
1
# TODO(wanghaoshuang): replaced by correct data reader
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
random_reader
(
num_classes
),
buf_size
=
128
*
10
),
batch_size
=
BATCH_SIZE
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
images
,
label
])
exe
.
run
(
fluid
.
default_startup_program
())
for
pass_id
in
range
(
PASS_NUM
):
error_evaluator
.
reset
(
exe
)
for
data
in
train_reader
():
loss
,
error
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
]
+
error_evaluator
.
metrics
)
pass_error
=
error_evaluator
.
eval
(
exe
)
print
"loss: %s; distance error: %s; pass_dis_error: %s;"
%
(
str
(
loss
),
str
(
error
),
str
(
pass_error
))
def
ocr_ctc_net
(
images
,
num_classes
,
param_attrs
):
conv_features
=
ocr_conv
(
images
,
8
,
True
,
param_attrs
)
sliced_feature
=
fluid
.
layers
.
im2sequence
(
input
=
conv_features
,
stride
=
[
1
,
1
],
filter_size
=
[
1
,
3
])
gru_forward
=
fluid
.
layers
.
dynamic_gru
(
input
=
sliced_feature
,
size
=
128
,
param_attr
=
param_attrs
)
gru_backward
=
fluid
.
layers
.
dynamic_gru
(
input
=
sliced_feature
,
size
=
128
,
is_reverse
=
True
,
param_attr
=
param_attrs
)
fc_out
=
fluid
.
layers
.
fc
(
input
=
[
gru_forward
,
gru_backward
],
size
=
num_classes
+
1
,
param_attr
=
param_attrs
)
return
fc_out
def
get_feeder_data
(
data
,
place
):
pixel_tensor
=
core
.
LoDTensor
()
pixel_data
=
np
.
concatenate
(
map
(
lambda
x
:
x
[
0
][
np
.
newaxis
,
:],
data
),
axis
=
0
).
astype
(
"float32"
)
pixel_tensor
.
set
(
pixel_data
,
place
)
label_tensor
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
),
place
)
return
{
"pixel"
:
pixel_tensor
,
"label"
:
label_tensor
}
def
train
(
num_classes
=
20
,
l2
=
0.0005
*
16
,
clip_threshold
=
10
,
data_reader
=
dummy_reader
,
learning_rate
=
((
1.0e-3
)
/
16
),
momentum
=
0.9
,
batch_size
=
4
,
pass_num
=
2
):
param_attrs
=
fluid
.
ParamAttr
(
regularizer
=
fluid
.
regularizer
.
L2Decay
(
l2
),
gradient_clip
=
fluid
.
clip
.
GradientClipByValue
(
clip_threshold
))
data_shape
=
data_reader
.
data_shape
()
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
fc_out
=
ocr_ctc_net
(
images
,
num_classes
,
param_attrs
)
cost
=
fluid
.
layers
.
warpctc
(
input
=
fc_out
,
label
=
label
,
size
=
num_classes
+
1
,
blank
=
num_classes
,
norm_by_times
=
True
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
learning_rate
,
momentum
=
momentum
)
opts
=
optimizer
.
minimize
(
cost
)
decoded_out
=
fluid
.
layers
.
ctc_greedy_decoder
(
input
=
fc_out
,
blank
=
num_classes
)
casted_label
=
fluid
.
layers
.
cast
(
x
=
label
,
dtype
=
'int64'
)
error_evaluator
=
fluid
.
evaluator
.
EditDistance
(
input
=
decoded_out
,
label
=
casted_label
)
train_reader
=
paddle
.
batch
(
data_reader
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
data_reader
.
test
(),
batch_size
=
batch_size
)
#place = fluid.CPUPlace()
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
images
,
label
])
exe
.
run
(
fluid
.
default_startup_program
())
inference_program
=
fluid
.
io
.
get_inference_program
(
error_evaluator
)
for
pass_id
in
range
(
pass_num
):
error_evaluator
.
reset
(
exe
)
batch_id
=
0
for
data
in
train_reader
():
loss
,
batch_edit_distance
,
_
,
_
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
get_feeder_data
(
data
,
place
),
fetch_list
=
[
avg_cost
]
+
error_evaluator
.
metrics
)
print
"Pass[%d], batch[%d]; loss: %s; edit distance: %s"
%
(
pass_id
,
batch_id
,
loss
[
0
],
batch_edit_distance
[
0
])
batch_id
+=
1
train_edit_distance
=
error_evaluator
.
eval
(
exe
)
print
"End pass[%d]; train data edit_distance: %s"
%
(
pass_id
,
str
(
train_edit_distance
))
# test
error_evaluator
.
reset
(
exe
)
for
data
in
test_reader
():
exe
.
run
(
inference_program
,
feed
=
get_feeder_data
(
data
,
place
))
test_edit_distance
=
error_evaluator
.
eval
(
exe
)
print
"End pass[%d]; test data edit_distance: %s"
%
(
pass_id
,
str
(
test_edit_distance
))
if
__name__
==
"__main__"
:
train
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录