Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bfda10aa
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bfda10aa
编写于
2月 03, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add init version of paralleled data reader.
上级
c9e35e62
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
222 addition
and
0 deletion
+222
-0
fluid/DeepASR/data_utils/parallel_rader.py
fluid/DeepASR/data_utils/parallel_rader.py
+222
-0
未找到文件。
fluid/DeepASR/data_utils/parallel_rader.py
0 → 100644
浏览文件 @
bfda10aa
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
random
import
Queue
import
numpy
as
np
import
struct
import
data_utils.augmentor.trans_mean_variance_norm
as
trans_mean_variance_norm
import
data_utils.augmentor.trans_add_delta
as
trans_add_delta
from
multiprocessing
import
Manager
,
Pool
from
threading
import
Thread
class
SampleInfo
(
object
):
def
__init__
(
self
,
feature_bin_path
,
feature_start
,
feature_size
,
feature_frame_num
,
feature_dim
,
label_bin_path
,
label_start
,
label_size
,
label_frame_num
):
self
.
feature_bin_path
=
feature_bin_path
self
.
feature_start
=
feature_start
self
.
feature_size
=
feature_size
self
.
feature_frame_num
=
feature_frame_num
self
.
feature_dim
=
feature_dim
self
.
label_bin_path
=
label_bin_path
self
.
label_start
=
label_start
self
.
label_size
=
label_size
self
.
label_frame_num
=
label_frame_num
class
SampleInfoBucket
(
object
):
def
__init__
(
self
,
feature_bin_paths
,
feature_desc_paths
,
label_bin_paths
,
label_desc_paths
):
block_num
=
len
(
label_bin_paths
)
assert
len
(
label_desc_paths
)
==
block_num
assert
len
(
feature_bin_paths
)
==
block_num
assert
len
(
feature_desc_paths
)
==
block_num
self
.
_block_num
=
block_num
self
.
_feature_bin_paths
=
feature_bin_paths
self
.
_feature_desc_paths
=
feature_desc_paths
self
.
_label_bin_paths
=
label_bin_paths
self
.
_label_desc_paths
=
label_desc_paths
def
generate_sample_info_list
(
self
):
''' one thread '''
sample_info_list
=
[]
for
block_idx
in
xrange
(
self
.
_block_num
):
label_bin_path
=
self
.
_label_bin_paths
[
block_idx
]
label_desc_path
=
self
.
_label_desc_paths
[
block_idx
]
feature_bin_path
=
self
.
_feature_bin_paths
[
block_idx
]
feature_desc_path
=
self
.
_feature_desc_paths
[
block_idx
]
label_desc_lines
=
open
(
label_desc_path
).
readlines
()
feature_desc_lines
=
open
(
feature_desc_path
).
readlines
()
sample_num
=
int
(
label_desc_lines
[
0
].
split
()[
1
])
assert
sample_num
==
int
(
feature_desc_lines
[
0
].
split
()[
1
])
for
i
in
xrange
(
sample_num
):
feature_desc_split
=
feature_desc_lines
[
i
+
1
].
split
()
feature_start
=
int
(
feature_desc_split
[
2
])
feature_size
=
int
(
feature_desc_split
[
3
])
feature_frame_num
=
int
(
feature_desc_split
[
4
])
feature_dim
=
int
(
feature_desc_split
[
5
])
label_desc_split
=
label_desc_lines
[
i
+
1
].
split
()
label_start
=
int
(
label_desc_split
[
2
])
label_size
=
int
(
label_desc_split
[
3
])
label_frame_num
=
int
(
label_desc_split
[
4
])
sample_info_list
.
append
(
SampleInfo
(
feature_bin_path
,
feature_start
,
feature_size
,
feature_frame_num
,
feature_dim
,
label_bin_path
,
label_start
,
label_size
,
label_frame_num
))
return
sample_info_list
def
DataReader
(
object
):
def
__init__
(
self
,
feature_file_list
,
label_file_list
,
drop_sentence_len
=
512
,
seed
=
1
):
self
.
_drop_sentence_len
=
drop_sentence_len
self
.
_frame_dim
=
120
*
11
self
.
_drop_frame_len
=
256
self
.
_shuffle_block_num
=
1
self
.
_drop_frame_len
=
256
self
.
_feature_file_list
=
feature_file_list
self
.
_label_file_list
=
label_file_list
self
.
generate_bucket_list
(
True
)
def
generate_bucket_list
(
self
,
is_shuffle
):
if
self
.
_block_info_list
is
None
:
block_feature_info_lines
=
open
(
self
.
_feature_file_list
).
readlines
()
block_label_info_lines
=
open
(
self
.
_label_file_list
).
readlines
()
assert
len
(
block_feature_info_lines
)
==
len
(
block_label_info_lines
)
self
.
_block_info_list
=
[]
for
i
in
xrange
(
0
,
len
(
block_feature_info_lines
),
2
):
block_info
=
(
block_feature_info_lines
[
i
],
block_feature_info_lines
[
i
+
1
],
block_label_info_lines
[
i
],
block_label_info_lines
[
i
+
1
])
self
.
_block_info_list
.
append
(
map
(
lambda
x
:
x
.
strip
(),
block_info
))
if
is_shuffle
:
random
.
shuffle
(
self
.
_block_info_list
)
self
.
_bucket_list
=
[]
for
i
in
xrange
(
0
,
len
(
self
.
_block_info_list
),
self
.
_shuffle_block_num
):
bucket_block_info
=
self
.
_block_info_list
[
i
:
i
+
self
.
_shuffle_block_num
]
buket_list
.
append
(
SampleInfoBucket
(
map
(
lambda
info
:
info
[
0
],
bucket_block_info
),
map
(
lambda
info
:
info
[
1
],
bucket_block_info
),
map
(
lambda
info
:
info
[
2
],
bucket_block_info
),
map
(
lambda
info
:
info
[
3
],
bucket_block_info
)))
def
set_transformers
(
self
,
transformers
):
self
.
_transformers
=
transformers
def
_sample_generator
(
self
):
sample_queue
=
Queue
.
Queue
(
1024
)
def
data_loading_worker
(
sample_queue
):
pool
=
Pool
(
processes
=
10
)
def
sample_processing_worker
(
sample_info
):
f_feature
=
open
(
sample_info
.
feature_bin_path
,
'r'
)
f_label
=
open
(
sample_info
.
label_bin_path
,
'r'
)
f_label
.
seek
(
sample_info
.
label_start
,
0
)
label_bytes
=
f_label
.
read
(
sample_info
.
label_size
)
f_label
.
close
()
assert
sample_info
.
label_frame_num
*
4
==
label_bytes
label_array
=
struct
.
unpack
(
'I'
*
sample_info
.
label_frame_num
,
label_bytes
)
label_data
=
np
.
array
(
label_array
,
dtype
=
'int64'
).
reshape
(
(
sample_info
.
label_frame_num
,
1
))
f_feature
.
seek
(
sample_info
.
feature_start
,
0
)
feature_bytes
=
f_feature
.
read
(
sample_info
.
feature_size
)
f_feature
.
close
()
assert
sample_info
.
feature_frame_num
*
sample_info
.
feature_dim
*
4
==
feature_bytes
feature_array
=
struct
.
unpack
(
'f'
*
sample_info
.
feature_frame_num
*
sample_info
.
feature_dim
,
feature_bytes
)
feature_data
=
np
.
array
(
feature_array
,
dytpe
=
'float32'
).
reshape
((
sample_info
.
feature_frame_num
,
sample_info
.
feature_dim
))
# drop long sentence
if
self
.
_drop_sentence_len
<
sample_data
[
0
].
shape
[
0
]:
return
None
sample_data
=
(
feature_data
,
label_data
)
for
transformer
in
self
.
_transformers
:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data
=
transformer
.
perform_trans
(
sample_data
)
return
sample_data
for
sample_info_bucket
in
self
.
_bucket_list
:
sample_info_list
=
sample_info_bucket
.
generate_sample_info_list
(
)
random
.
shuffle
(
sample_info_list
)
# do shuffle here
processed_data
=
pool
.
map
(
f
,
sample_info_list
)
# the result is ordered
for
sample_data
in
processed_data
:
if
sample_data
is
None
:
continue
sample_queue
.
put
(
sample_data
)
sample_queue
.
put
(
None
)
t
=
Thread
(
target
=
data_processing_worker
,
args
=
(
sample_queue
))
t
.
daemon
=
True
t
.
start
()
while
True
:
sample
=
sample_queue
.
get
()
if
sample
is
None
:
break
yield
sample
def
batch_iterator
(
self
,
batch_size
,
minimum_batch_size
):
batch_samples
=
[]
lod
=
[
0
]
# check whether need parallel here
for
sample
in
self
.
_sample_generator
():
batch_samples
.
append
(
sample
)
lod
.
append
(
lod
[
-
1
]
+
sample
[
0
].
shape
[
0
])
if
len
(
batch_samples
)
==
batch_size
:
batch_feature
=
np
.
zeros
(
(
lod
[
-
1
],
self
.
_frame_dim
),
dtype
=
"float32"
)
batch_label
=
np
.
zeros
((
lod
[
-
1
],
1
),
dtype
=
"int64"
)
start
=
0
for
sample
in
batch_samples
:
frame_num
=
sample
[
0
].
shape
[
0
]
batch_feature
[
start
:
start
+
frame_num
,
:]
=
sample
[
0
]
batch_label
[
start
:
start
+
frame_num
,
:]
=
sample
[
1
]
start
+=
frame_num
yield
(
batch_feature
,
batch_label
,
lod
)
batch_samples
=
[]
lod
=
[
0
]
if
len
(
batch_samples
)
>=
minimum_batch_size
:
batch_feature
=
np
.
zeros
((
lod
[
-
1
],
self
.
_frame_dim
),
dtype
=
"float32"
)
batch_label
=
np
.
zeros
((
lod
[
-
1
],
1
),
dtype
=
"int64"
)
start
=
0
for
sample
in
batch_samples
:
frame_num
=
sample
[
0
].
shape
[
0
]
batch_feature
[
start
:
start
+
frame_num
,
:]
=
sample
[
0
]
batch_label
[
start
:
start
+
frame_num
,
:]
=
sample
[
1
]
start
+=
frame_num
yield
(
batch_feature
,
batch_label
,
lod
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录