Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bf0899a5
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
bf0899a5
编写于
9月 17, 2019
作者:
Z
zhumanyu
提交者:
lvmengsi
9月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Spade (#3343)
* add SPADE
上级
9219a777
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
1048 addition
and
16 deletion
+1048
-16
PaddleCV/PaddleGAN/data_reader.py
PaddleCV/PaddleGAN/data_reader.py
+161
-1
PaddleCV/PaddleGAN/infer.py
PaddleCV/PaddleGAN/infer.py
+43
-1
PaddleCV/PaddleGAN/network/SPADE_network.py
PaddleCV/PaddleGAN/network/SPADE_network.py
+157
-0
PaddleCV/PaddleGAN/network/base_network.py
PaddleCV/PaddleGAN/network/base_network.py
+175
-13
PaddleCV/PaddleGAN/network/vgg.py
PaddleCV/PaddleGAN/network/vgg.py
+97
-0
PaddleCV/PaddleGAN/scripts/run_SPADE.sh
PaddleCV/PaddleGAN/scripts/run_SPADE.sh
+4
-0
PaddleCV/PaddleGAN/train.py
PaddleCV/PaddleGAN/train.py
+1
-1
PaddleCV/PaddleGAN/trainer/SPADE.py
PaddleCV/PaddleGAN/trainer/SPADE.py
+386
-0
PaddleCV/PaddleGAN/util/utility.py
PaddleCV/PaddleGAN/util/utility.py
+24
-0
未找到文件。
PaddleCV/PaddleGAN/data_reader.py
浏览文件 @
bf0899a5
...
...
@@ -23,6 +23,7 @@ import struct
import
os
import
paddle
import
random
import
sys
def
RandomCrop
(
img
,
crop_w
,
crop_h
):
...
...
@@ -58,6 +59,19 @@ def get_preprocess_param(load_size, crop_size):
}
def
get_preprocess_param
(
load_width
,
load_height
,
crop_width
,
crop_height
):
if
crop_width
==
load_width
:
x
=
0
y
=
0
else
:
x
=
np
.
random
.
randint
(
0
,
np
.
maximum
(
0
,
load_width
-
crop_width
))
y
=
np
.
random
.
randint
(
0
,
np
.
maximum
(
0
,
load_height
-
crop_height
))
flip
=
np
.
random
.
rand
()
>
0.5
return
{
"crop_pos"
:
(
x
,
y
),
"flip"
:
flip
}
class
reader_creator
(
object
):
''' read and preprocess dataset'''
...
...
@@ -94,7 +108,7 @@ class reader_creator(object):
if
self
.
shuffle
:
np
.
random
.
shuffle
(
self
.
lines
)
for
i
,
file
in
enumerate
(
self
.
lines
):
file
=
file
.
strip
(
'
\n\r\t
'
)
self
.
name2id
[
os
.
path
.
basename
(
file
)]
=
i
...
...
@@ -209,6 +223,125 @@ class pair_reader_creator(reader_creator):
return
reader
class
triplex_reader_creator
(
reader_creator
):
''' read and preprocess dataset'''
def
__init__
(
self
,
image_dir
,
list_filename
,
shuffle
=
False
,
batch_size
=
1
,
mode
=
"TRAIN"
):
super
(
triplex_reader_creator
,
self
).
__init__
(
image_dir
,
list_filename
,
shuffle
=
shuffle
,
batch_size
=
batch_size
,
mode
=
mode
)
def
make_reader
(
self
,
args
,
return_name
=
False
):
print
(
self
.
image_dir
,
self
.
list_filename
)
print
(
"files length:"
,
len
(
self
.
lines
))
def
reader
():
batch_out_1
=
[]
batch_out_2
=
[]
batch_out_3
=
[]
batch_out_name
=
[]
if
self
.
shuffle
:
np
.
random
.
shuffle
(
self
.
lines
)
for
line
in
self
.
lines
:
files
=
line
.
strip
(
'
\n\r\t
'
).
split
(
'
\t
'
)
if
len
(
files
)
!=
3
:
print
(
"files is not equal to 3!"
)
sys
.
exit
(
-
1
)
#label image instance
img1
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
files
[
0
]))
img2
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
files
[
1
])).
convert
(
'RGB'
)
if
not
args
.
no_instance
:
img3
=
Image
.
open
(
os
.
path
.
join
(
self
.
image_dir
,
files
[
2
]))
if
self
.
mode
==
"TRAIN"
:
param
=
get_preprocess_param
(
args
.
load_width
,
args
.
load_height
,
args
.
crop_width
,
args
.
crop_height
)
img1
=
img1
.
resize
((
args
.
load_width
,
args
.
load_height
),
Image
.
NEAREST
)
img2
=
img2
.
resize
((
args
.
load_width
,
args
.
load_height
),
Image
.
BICUBIC
)
if
not
args
.
no_instance
:
img3
=
img3
.
resize
((
args
.
load_width
,
args
.
load_height
),
Image
.
NEAREST
)
if
args
.
crop_type
==
'Centor'
:
img1
=
CentorCrop
(
img1
,
args
.
crop_width
,
args
.
crop_height
)
img2
=
CentorCrop
(
img2
,
args
.
crop_width
,
args
.
crop_height
)
if
not
args
.
no_instance
:
img3
=
CentorCrop
(
img3
,
args
.
crop_width
,
args
.
crop_height
)
elif
args
.
crop_type
==
'Random'
:
x
=
param
[
'crop_pos'
][
0
]
y
=
param
[
'crop_pos'
][
1
]
img1
=
img1
.
crop
(
(
x
,
y
,
x
+
args
.
crop_width
,
y
+
args
.
crop_height
))
img2
=
img2
.
crop
(
(
x
,
y
,
x
+
args
.
crop_width
,
y
+
args
.
crop_height
))
if
not
args
.
no_instance
:
img3
=
img3
.
crop
(
(
x
,
y
,
x
+
args
.
crop_width
,
y
+
args
.
crop_height
))
else
:
img1
=
img1
.
resize
((
args
.
crop_width
,
args
.
crop_height
),
Image
.
NEAREST
)
img2
=
img2
.
resize
((
args
.
crop_width
,
args
.
crop_height
),
Image
.
BICUBIC
)
if
not
args
.
no_instance
:
img3
=
img3
.
resize
((
args
.
crop_width
,
args
.
crop_height
),
Image
.
NEAREST
)
img1
=
np
.
array
(
img1
)
index
=
img1
[
np
.
newaxis
,
:,:]
input_label
=
np
.
zeros
((
args
.
label_nc
,
index
.
shape
[
1
],
index
.
shape
[
2
]))
np
.
put_along_axis
(
input_label
,
index
,
1.0
,
0
)
img1
=
input_label
img2
=
(
np
.
array
(
img2
).
astype
(
'float32'
)
/
255.0
-
0.5
)
/
0.5
img2
=
img2
.
transpose
([
2
,
0
,
1
])
if
not
args
.
no_instance
:
img3
=
np
.
array
(
img3
)[:,
:,
np
.
newaxis
]
img3
=
img3
.
transpose
([
2
,
0
,
1
])
###extracte edge from instance
edge
=
np
.
zeros
(
img3
.
shape
)
edge
=
edge
.
astype
(
'int8'
)
edge
[:,
:,
1
:]
=
edge
[:,
:,
1
:]
|
(
img3
[:,
:,
1
:]
!=
img3
[:,
:,
:
-
1
])
edge
[:,
:,
:
-
1
]
=
edge
[:,
:,
:
-
1
]
|
(
img3
[:,
:,
1
:]
!=
img3
[:,
:,
:
-
1
])
edge
[:,
1
:,
:]
=
edge
[:,
1
:,
:]
|
(
img3
[:,
1
:,
:]
!=
img3
[:,
:
-
1
,
:])
edge
[:,
:
-
1
,
:]
=
edge
[:,
:
-
1
,
:]
|
(
img3
[:,
1
:,
:]
!=
img3
[:,
:
-
1
,
:])
img3
=
edge
.
astype
(
'float32'
)
###end extracte
batch_out_1
.
append
(
img1
)
batch_out_2
.
append
(
img2
)
if
not
args
.
no_instance
:
batch_out_3
.
append
(
img3
)
if
return_name
:
batch_out_name
.
append
(
os
.
path
.
basename
(
files
[
0
]))
if
len
(
batch_out_1
)
==
self
.
batch_size
:
if
return_name
:
if
not
args
.
no_instance
:
yield
batch_out_1
,
batch_out_2
,
batch_out_3
,
batch_out_name
else
:
yield
batch_out_1
,
batch_out_2
,
batch_out_name
batch_out_name
=
[]
else
:
if
not
args
.
no_instance
:
yield
batch_out_1
,
batch_out_2
,
batch_out_3
else
:
yield
batch_out_1
,
batch_out_2
batch_out_1
=
[]
batch_out_2
=
[]
batch_out_3
=
[]
return
reader
class
celeba_reader_creator
(
reader_creator
):
''' read and preprocess dataset'''
...
...
@@ -461,6 +594,33 @@ class data_reader(object):
mode
=
"TEST"
)
reader_test
=
test_reader
.
make_reader
(
self
.
cfg
,
return_name
=
True
)
batch_num
=
train_reader
.
len
()
reader
=
train_reader
.
make_reader
(
self
.
cfg
)
return
reader
,
reader_test
,
batch_num
elif
self
.
cfg
.
model_net
in
[
'SPADE'
]:
dataset_dir
=
os
.
path
.
join
(
self
.
cfg
.
data_dir
,
self
.
cfg
.
dataset
)
train_list
=
os
.
path
.
join
(
dataset_dir
,
'train.txt'
)
if
self
.
cfg
.
train_list
is
not
None
:
train_list
=
self
.
cfg
.
train_list
train_reader
=
triplex_reader_creator
(
image_dir
=
dataset_dir
,
list_filename
=
train_list
,
shuffle
=
self
.
cfg
.
shuffle
,
batch_size
=
self
.
cfg
.
batch_size
,
mode
=
"TRAIN"
)
reader_test
=
None
if
self
.
cfg
.
run_test
:
test_list
=
os
.
path
.
join
(
dataset_dir
,
"test.txt"
)
if
self
.
cfg
.
test_list
is
not
None
:
test_list
=
self
.
cfg
.
test_list
test_reader
=
triplex_reader_creator
(
image_dir
=
dataset_dir
,
list_filename
=
test_list
,
shuffle
=
False
,
batch_size
=
1
,
mode
=
"TEST"
)
reader_test
=
test_reader
.
make_reader
(
self
.
cfg
,
return_name
=
True
)
id2name
=
test_reader
.
id2name
batch_num
=
train_reader
.
len
()
reader
=
train_reader
.
make_reader
(
self
.
cfg
)
...
...
PaddleCV/PaddleGAN/infer.py
浏览文件 @
bf0899a5
...
...
@@ -26,7 +26,7 @@ import numpy as np
import
imageio
import
glob
from
util.config
import
add_arguments
,
print_arguments
from
data_reader
import
celeba_reader_creator
,
reader_creator
from
data_reader
import
celeba_reader_creator
,
reader_creator
,
triplex_reader_creato
from
util.utility
import
check_attribute_conflict
,
check_gpu
,
save_batch_image
from
util
import
utility
import
copy
...
...
@@ -44,13 +44,19 @@ add_arg('init_model', str, None, "The init model file of d
add_arg
(
'output'
,
str
,
"./infer_result"
,
"The directory the infer result to be saved to."
)
add_arg
(
'input_style'
,
str
,
"A"
,
"The style of the input, A or B"
)
add_arg
(
'norm_type'
,
str
,
"batch_norm"
,
"Which normalization to used"
)
add_arg
(
'crop_type'
,
str
,
None
,
"Which crop type to use"
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether to use GPU to train."
)
add_arg
(
'dropout'
,
bool
,
False
,
"Whether to use dropout"
)
add_arg
(
'g_base_dims'
,
int
,
64
,
"Base channels in CycleGAN generator"
)
add_arg
(
'ngf'
,
int
,
64
,
"Base channels in SPADE generator"
)
add_arg
(
'c_dim'
,
int
,
13
,
"the size of attrs"
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Whether to use GRU"
)
add_arg
(
'crop_size'
,
int
,
178
,
"crop size"
)
add_arg
(
'image_size'
,
int
,
128
,
"image size"
)
add_arg
(
'load_height'
,
int
,
128
,
"image size"
)
add_arg
(
'load_width'
,
int
,
128
,
"image size"
)
add_arg
(
'crop_height'
,
int
,
128
,
"height of crop size"
)
add_arg
(
'crop_width'
,
int
,
128
,
"width of crop size"
)
add_arg
(
'selected_attrs'
,
str
,
"Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young"
,
"the attributes we selected to change"
)
...
...
@@ -60,6 +66,8 @@ add_arg('dataset_dir', str, "./data/celeba/", "the datase
add_arg
(
'n_layers'
,
int
,
5
,
"default layers in generotor"
)
add_arg
(
'gru_n_layers'
,
int
,
4
,
"default layers of GRU in generotor"
)
add_arg
(
'noise_size'
,
int
,
100
,
"the noise dimension"
)
add_arg
(
'label_nc'
,
int
,
36
,
"label numbers of SPADE"
)
add_arg
(
'no_instance'
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use instance label."
)
# yapf: enable
...
...
@@ -159,6 +167,13 @@ def infer(args):
from
network.DCGAN_network
import
DCGAN_model
model
=
DCGAN_model
(
args
.
n_samples
)
fake
=
model
.
network_G
(
noise
,
name
=
"G"
)
elif
args
.
model_net
==
'SPADE'
:
from
network.SPADE_network
import
SPADE_model
model
=
SPADE_model
()
input_label
=
fluid
.
layers
.
data
(
name
=
'input_label'
,
shape
=
data_shape
,
dtype
=
'float32'
)
input_ins
=
fluid
.
layers
.
data
(
name
=
'input_ins'
,
shape
=
data_shape
,
dtype
=
'float32'
)
input_
=
fluid
.
layers
.
concat
([
input_label
,
input_ins
],
1
)
fake
=
model
.
network_G
(
input_
,
"generator"
,
cfg
=
args
,
is_test
=
True
)
else
:
raise
NotImplementedError
(
"model_net {} is not support"
.
format
(
args
.
model_net
))
...
...
@@ -294,6 +309,33 @@ def infer(args):
imageio
.
imwrite
(
os
.
path
.
join
(
args
.
output
,
"fake_"
+
image_name
),
(
(
fake_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
elif
args
.
model_net
==
'SPADE'
:
test_reader
=
triplex_reader_creator
(
image_dir
=
args
.
dataset_dir
,
list_filename
=
args
.
test_list
,
shuffle
=
False
,
batch_size
=
1
,
mode
=
"TEST"
)
reader_test
=
test_reader
.
make_reader
(
args
,
return_name
=
True
)
for
data
in
zip
(
reader_test
()):
data_A
,
data_B
,
data_C
,
name
=
data
[
0
]
name
=
name
[
0
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_C
=
fluid
.
LoDTensor
()
tensor_A
.
set
(
data_A
,
place
)
tensor_C
.
set
(
data_C
,
place
)
fake_B_temp
=
exe
.
run
(
fetch_list
=
[
fake
.
name
],
feed
=
{
"input_label"
:
tensor_A
,
"input_ins"
:
tensor_C
})
fake_B_temp
=
np
.
squeeze
(
fake_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
input_B_temp
=
np
.
squeeze
(
data_B
[
0
]).
transpose
([
1
,
2
,
0
])
imageio
.
imwrite
(
args
.
output
+
"/fakeB_"
+
"_"
+
name
,
(
(
fake_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
imageio
.
imwrite
(
args
.
output
+
"/real_"
+
"_"
+
name
,
(
(
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
elif
args
.
model_net
==
'CGAN'
:
noise_data
=
np
.
random
.
uniform
(
...
...
PaddleCV/PaddleGAN/network/SPADE_network.py
0 → 100644
浏览文件 @
bf0899a5
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
.base_network
import
conv2d
,
deconv2d
,
norm_layer
,
conv2d_spectral_norm
import
paddle.fluid
as
fluid
import
numpy
as
np
class
SPADE_model
(
object
):
def
__init__
(
self
):
pass
def
network_G
(
self
,
input
,
name
,
cfg
,
is_test
=
False
):
nf
=
cfg
.
ngf
num_up_layers
=
5
sw
=
cfg
.
crop_width
//
(
2
**
num_up_layers
)
sh
=
cfg
.
crop_height
//
(
2
**
num_up_layers
)
seg
=
input
x
=
fluid
.
layers
.
resize_nearest
(
seg
,
out_shape
=
(
sh
,
sw
),
align_corners
=
False
)
x
=
conv2d
(
x
,
16
*
nf
,
3
,
padding
=
1
,
name
=
name
+
"_fc"
,
use_bias
=
True
,
is_test
=
is_test
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
16
*
nf
,
16
*
nf
,
cfg
,
name
=
name
+
"_head_0"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
resize_nearest
(
x
,
scale
=
2
,
align_corners
=
False
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
16
*
nf
,
16
*
nf
,
cfg
,
name
=
name
+
"_G_middle_0"
,
is_test
=
is_test
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
16
*
nf
,
16
*
nf
,
cfg
,
name
=
name
+
"_G_middle_1"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
resize_nearest
(
x
,
scale
=
2
,
align_corners
=
False
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
16
*
nf
,
8
*
nf
,
cfg
,
name
=
name
+
"_up_0"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
resize_nearest
(
x
,
scale
=
2
,
align_corners
=
False
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
8
*
nf
,
4
*
nf
,
cfg
,
name
=
name
+
"_up_1"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
resize_nearest
(
x
,
scale
=
2
,
align_corners
=
False
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
4
*
nf
,
2
*
nf
,
cfg
,
name
=
name
+
"_up_2"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
resize_nearest
(
x
,
scale
=
2
,
align_corners
=
False
)
x
=
self
.
SPADEResnetBlock
(
x
,
seg
,
2
*
nf
,
1
*
nf
,
cfg
,
name
=
name
+
"_up_3"
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
leaky_relu
(
x
,
alpha
=
0.2
,
name
=
name
+
'_conv_img_leaky_relu'
)
x
=
conv2d
(
x
,
3
,
3
,
padding
=
1
,
name
=
name
+
"_conv_img"
,
use_bias
=
True
,
is_test
=
is_test
)
x
=
fluid
.
layers
.
tanh
(
x
)
return
x
def
SPADEResnetBlock
(
self
,
x
,
seg
,
fin
,
fout
,
opt
,
name
,
is_test
=
False
):
learn_shortcut
=
(
fin
!=
fout
)
fmiddle
=
min
(
fin
,
fout
)
semantic_nc
=
opt
.
label_nc
+
(
0
if
opt
.
no_instance
else
1
)
if
learn_shortcut
:
x_s
=
self
.
SPADE
(
x
,
seg
,
fin
,
name
=
name
+
".norm_s"
,
is_test
=
is_test
)
x_s
=
conv2d_spectral_norm
(
x_s
,
fout
,
1
,
use_bias
=
False
,
name
=
name
+
".conv_s"
,
is_test
=
is_test
)
else
:
x_s
=
x
dx
=
self
.
SPADE
(
x
,
seg
,
fin
,
name
=
name
+
".norm_0"
,
is_test
=
is_test
)
dx
=
fluid
.
layers
.
leaky_relu
(
dx
,
alpha
=
0.2
,
name
=
name
+
'_leaky_relu0'
)
dx
=
conv2d_spectral_norm
(
dx
,
fmiddle
,
3
,
padding
=
1
,
name
=
name
+
".conv_0"
,
use_bias
=
True
,
is_test
=
is_test
)
dx
=
self
.
SPADE
(
dx
,
seg
,
fmiddle
,
name
=
name
+
".norm_1"
,
is_test
=
is_test
)
dx
=
fluid
.
layers
.
leaky_relu
(
dx
,
alpha
=
0.2
,
name
=
name
+
'_leaky_relu1'
)
dx
=
conv2d_spectral_norm
(
dx
,
fout
,
3
,
padding
=
1
,
name
=
name
+
".conv_1"
,
use_bias
=
True
,
is_test
=
is_test
)
output
=
dx
+
x_s
return
output
def
SPADE
(
self
,
input
,
seg_map
,
norm_nc
,
name
,
is_test
=
False
):
nhidden
=
128
ks
=
3
pw
=
ks
//
2
seg_map
=
fluid
.
layers
.
resize_nearest
(
seg_map
,
out_shape
=
input
.
shape
[
2
:],
align_corners
=
False
)
actv
=
conv2d
(
seg_map
,
nhidden
,
ks
,
padding
=
pw
,
activation_fn
=
'relu'
,
name
=
name
+
".mlp_shared.0"
,
use_bias
=
True
)
gamma
=
conv2d
(
actv
,
norm_nc
,
ks
,
padding
=
pw
,
name
=
name
+
".mlp_gamma"
,
use_bias
=
True
)
beta
=
conv2d
(
actv
,
norm_nc
,
ks
,
padding
=
pw
,
name
=
name
+
".mlp_beta"
,
use_bias
=
True
)
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
".param_free_norm.weight"
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
),
trainable
=
False
)
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
".param_free_norm.bias"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
False
)
norm
=
fluid
.
layers
.
batch_norm
(
input
=
input
,
name
=
name
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
moving_mean_name
=
name
+
".param_free_norm.running_mean"
,
moving_variance_name
=
name
+
".param_free_norm.running_var"
,
is_test
=
is_test
)
out
=
norm
*
(
1
+
gamma
)
+
beta
return
out
def
network_D
(
self
,
input
,
name
,
cfg
):
num_D
=
2
result
=
[]
for
i
in
range
(
num_D
):
out
=
build_discriminator_Nlayers
(
input
,
name
=
name
+
"_%d"
%
i
)
result
.
append
(
out
)
input
=
fluid
.
layers
.
pool2d
(
input
,
pool_size
=
3
,
pool_type
=
"avg"
,
pool_stride
=
2
,
pool_padding
=
1
,
name
=
name
+
"_pool%d"
%
i
)
return
result
def
build_discriminator_Nlayers
(
input
,
name
=
"discriminator"
,
d_nlayers
=
4
,
d_base_dims
=
64
,
norm_type
=
'instance_norm'
):
kw
=
4
padw
=
int
(
np
.
ceil
((
kw
-
1.0
)
/
2
))
nf
=
d_base_dims
res_list
=
[]
res1
=
conv2d
(
input
,
nf
,
kw
,
2
,
0.02
,
1
,
name
=
name
+
".model0.0"
,
activation_fn
=
'leaky_relu'
,
relufactor
=
0.2
,
use_bias
=
True
)
d_dims
=
d_base_dims
res_list
.
append
(
res1
)
for
i
in
range
(
1
,
d_nlayers
):
conv_name
=
name
+
".model{}.0.0"
.
format
(
i
)
nf
=
min
(
nf
*
2
,
512
)
stride
=
1
if
i
==
d_nlayers
-
1
else
2
dis_output
=
conv2d_spectral_norm
(
res_list
[
-
1
],
nf
,
kw
,
stride
,
0.02
,
1
,
name
=
conv_name
,
norm
=
norm_type
,
activation_fn
=
'leaky_relu'
,
relufactor
=
0.2
,
use_bias
=
False
,
norm_affine
=
False
)
res_list
.
append
(
dis_output
)
o_c4
=
conv2d
(
res_list
[
-
1
],
1
,
4
,
1
,
0.02
,
1
,
name
+
".model{}.0"
.
format
(
d_nlayers
),
use_bias
=
True
)
res_list
.
append
(
o_c4
)
return
res_list
PaddleCV/PaddleGAN/network/base_network.py
浏览文件 @
bf0899a5
...
...
@@ -34,12 +34,18 @@ def cal_padding(img_size, stride, filter_size, dilation=1):
return
out_size
//
2
,
out_size
-
out_size
//
2
def
norm_layer
(
input
,
norm_type
=
'batch_norm'
,
name
=
None
,
is_test
=
False
):
def
norm_layer
(
input
,
norm_type
=
'batch_norm'
,
name
=
None
,
is_test
=
False
,
affine
=
True
):
if
norm_type
==
'batch_norm'
:
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
))
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
if
affine
==
True
:
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
))
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
else
:
param_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_w'
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
False
)
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
'_b'
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
),
trainable
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
,
param_attr
=
param_attr
,
...
...
@@ -58,14 +64,24 @@ def norm_layer(input, norm_type='batch_norm', name=None, is_test=False):
if
name
is
not
None
:
scale_name
=
name
+
"_scale"
offset_name
=
name
+
"_offset"
scale_param
=
fluid
.
ParamAttr
(
name
=
scale_name
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
True
)
offset_param
=
fluid
.
ParamAttr
(
name
=
offset_name
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
True
)
if
affine
:
scale_param
=
fluid
.
ParamAttr
(
name
=
scale_name
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
True
)
offset_param
=
fluid
.
ParamAttr
(
name
=
offset_name
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
True
)
else
:
scale_param
=
fluid
.
ParamAttr
(
name
=
scale_name
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
False
)
offset_param
=
fluid
.
ParamAttr
(
name
=
offset_name
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
trainable
=
False
)
scale
=
helper
.
create_parameter
(
attr
=
scale_param
,
shape
=
input
.
shape
[
1
:
2
],
dtype
=
dtype
)
offset
=
helper
.
create_parameter
(
...
...
@@ -375,3 +391,149 @@ def conv_and_pool(x, num_filters, name, stddev=0.02, act=None):
bias_attr
=
bias_attr
,
act
=
act
)
return
out
def
conv2d_spectral_norm
(
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
1
,
stddev
=
0.02
,
padding
=
0
,
name
=
"conv2d_spectral_norm"
,
norm
=
None
,
activation_fn
=
None
,
relufactor
=
0.0
,
use_bias
=
False
,
padding_type
=
None
,
initial
=
"normal"
,
is_test
=
False
,
norm_affine
=
True
):
b
,
c
,
h
,
w
=
input
.
shape
height
=
num_filters
width
=
c
*
filter_size
*
filter_size
helper
=
fluid
.
layer_helper
.
LayerHelper
(
"conv2d_spectral_norm"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
weight_param
=
fluid
.
ParamAttr
(
name
=
name
+
".weight_orig"
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
),
trainable
=
True
)
weight
=
helper
.
create_parameter
(
attr
=
weight_param
,
shape
=
(
num_filters
,
c
,
filter_size
,
filter_size
),
dtype
=
dtype
)
weight_spectral_norm
=
fluid
.
layers
.
spectral_norm
(
weight
,
dim
=
0
,
name
=
name
+
".spectral_norm"
)
weight
=
weight_spectral_norm
if
use_bias
:
bias_attr
=
fluid
.
ParamAttr
(
name
=
name
+
"_b"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
))
else
:
bias_attr
=
False
conv
=
conv2d_with_filter
(
input
,
weight
,
stride
,
padding
,
bias_attr
=
bias_attr
,
name
=
name
)
if
norm
is
not
None
:
conv
=
norm_layer
(
input
=
conv
,
norm_type
=
norm
,
name
=
name
+
"_norm"
,
is_test
=
is_test
,
affine
=
norm_affine
)
if
activation_fn
==
'relu'
:
conv
=
fluid
.
layers
.
relu
(
conv
,
name
=
name
+
'_relu'
)
elif
activation_fn
==
'leaky_relu'
:
conv
=
fluid
.
layers
.
leaky_relu
(
conv
,
alpha
=
relufactor
,
name
=
name
+
'_leaky_relu'
)
elif
activation_fn
==
'tanh'
:
conv
=
fluid
.
layers
.
tanh
(
conv
,
name
=
name
+
'_tanh'
)
elif
activation_fn
==
'sigmoid'
:
conv
=
fluid
.
layers
.
sigmoid
(
conv
,
name
=
name
+
'_sigmoid'
)
elif
activation_fn
==
None
:
conv
=
conv
else
:
raise
NotImplementedError
(
"activation: [%s] is not support"
%
activation_fn
)
return
conv
def
conv2d_with_filter
(
input
,
filter
,
stride
=
1
,
padding
=
0
,
dilation
=
1
,
groups
=
None
,
bias_attr
=
None
,
use_cudnn
=
True
,
act
=
None
,
name
=
None
):
"""
Similar with conv2d, this is a convolution2D layers. Difference
is filter can be token as input directly instead of setting filter size
and number of fliters. Filter is a 4-D tensor with shape
[num_filter, num_channel, filter_size_h, filter_size_w].
Args:
input (Variable): The input image with [N, C, H, W] format.
filter(Variable): The input filter with [N, C, H, W] format.
stride (int|tuple): The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride. Default: stride = 1.
padding (int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
dilation (int|tuple): The dilation size. If dilation is a tuple, it must
contain two integers, (dilation_H, dilation_W). Otherwise, the
dilation_H = dilation_W = dilation. Default: dilation = 1.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
act (str): Activation type, if it is set to None, activation is not appended.
Default: None
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None
Returns:
Variable: The tensor variable storing the convolution and
\
non-linearity activation result.
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
data = fluid.layers.data(name='data', shape=[3, 32, 32],
\
dtype='float32')
filter = fluid.layers.data(name='filter',shape=[10,3,3,3],
\
dtype='float32',append_batch_size=False)
conv2d = fluid.layers.conv2d(input=data,
filter=filter,
act="relu")
"""
helper
=
fluid
.
layer_helper
.
LayerHelper
(
"conv2d_with_filter"
,
**
locals
())
num_channels
=
input
.
shape
[
1
]
num_filters
=
filter
.
shape
[
0
]
num_filter_channels
=
filter
.
shape
[
1
]
l_type
=
'conv2d'
if
(
num_channels
==
groups
and
num_filters
%
num_channels
==
0
and
not
use_cudnn
):
l_type
=
'depthwise_conv2d'
if
groups
is
None
:
assert
num_filter_channels
==
num_channels
else
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
if
num_channels
//
groups
!=
num_filter_channels
:
raise
ValueError
(
"num_filter_channels must equal to num_channels
\
divided by groups."
)
stride
=
fluid
.
layers
.
utils
.
convert_to_list
(
stride
,
2
,
'stride'
)
padding
=
fluid
.
layers
.
utils
.
convert_to_list
(
padding
,
2
,
'padding'
)
dilation
=
fluid
.
layers
.
utils
.
convert_to_list
(
dilation
,
2
,
'dilation'
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
ValueError
(
"use_cudnn should be True or False"
)
pre_bias
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
helper
.
append_op
(
type
=
l_type
,
inputs
=
{
'Input'
:
input
,
'Filter'
:
filter
,
},
outputs
=
{
"Output"
:
pre_bias
},
attrs
=
{
'strides'
:
stride
,
'paddings'
:
padding
,
'dilations'
:
dilation
,
'groups'
:
groups
,
'use_cudnn'
:
use_cudnn
,
'use_mkldnn'
:
False
})
pre_act
=
helper
.
append_bias_op
(
pre_bias
,
dim_start
=
1
,
dim_end
=
2
)
return
helper
.
append_activation
(
pre_act
)
PaddleCV/PaddleGAN/network/vgg.py
0 → 100644
浏览文件 @
bf0899a5
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
__all__
=
[
"VGGNet"
,
"VGG11"
,
"VGG13"
,
"VGG16"
,
"VGG19"
]
train_parameters
=
{
"input_size"
:
[
3
,
224
,
224
],
"input_mean"
:
[
0.485
,
0.456
,
0.406
],
"input_std"
:
[
0.229
,
0.224
,
0.225
],
"learning_strategy"
:
{
"name"
:
"piecewise_decay"
,
"batch_size"
:
256
,
"epochs"
:
[
30
,
60
,
90
],
"steps"
:
[
0.1
,
0.01
,
0.001
,
0.0001
]
}
}
class
VGGNet
():
def
__init__
(
self
,
layers
=
16
,
name
=
""
):
self
.
params
=
train_parameters
self
.
layers
=
layers
self
.
name
=
name
def
net
(
self
,
input
,
class_dim
=
1000
):
layers
=
self
.
layers
vgg_spec
=
{
11
:
([
1
,
1
,
2
,
2
,
2
]),
13
:
([
2
,
2
,
2
,
2
,
2
]),
16
:
([
2
,
2
,
3
,
3
,
3
]),
19
:
([
2
,
2
,
4
,
4
,
4
])
}
assert
layers
in
vgg_spec
.
keys
(),
\
"supported layers are {} but input layer is {}"
.
format
(
vgg_spec
.
keys
(),
layers
)
nums
=
vgg_spec
[
layers
]
conv1
,
res
=
self
.
conv_block
(
input
,
64
,
nums
[
0
],
name
=
self
.
name
+
"_conv1_"
)
conv2
,
res
=
self
.
conv_block
(
res
,
128
,
nums
[
1
],
name
=
self
.
name
+
"_conv2_"
)
conv3
,
res
=
self
.
conv_block
(
res
,
256
,
nums
[
2
],
name
=
self
.
name
+
"_conv3_"
)
conv4
,
res
=
self
.
conv_block
(
res
,
512
,
nums
[
3
],
name
=
self
.
name
+
"_conv4_"
)
conv5
,
res
=
self
.
conv_block
(
res
,
512
,
nums
[
4
],
name
=
self
.
name
+
"_conv5_"
)
if
self
.
layers
==
16
:
return
[
conv1
,
conv2
,
conv3
]
elif
self
.
layers
==
19
:
return
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
]
def
conv_block
(
self
,
input
,
num_filter
,
groups
,
name
=
""
):
conv
=
input
for
i
in
range
(
groups
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
conv
,
num_filters
=
num_filter
,
filter_size
=
3
,
stride
=
1
,
padding
=
1
,
act
=
'relu'
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
name
+
str
(
i
+
1
)
+
"_weights"
,
trainable
=
False
),
bias_attr
=
False
)
if
i
==
0
:
relu_res
=
conv
return
relu_res
,
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_stride
=
2
)
def
load_vars
(
self
,
exe
,
program
,
pretrained_model
):
vars
=
[]
for
var
in
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"vgg"
):
vars
.
append
(
var
)
print
(
var
.
name
)
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
program
,
vars
)
def
VGG11
():
model
=
VGGNet
(
layers
=
11
)
return
model
def
VGG13
():
model
=
VGGNet
(
layers
=
13
)
return
model
def
VGG16
():
model
=
VGGNet
(
layers
=
16
,
name
=
"vgg16"
)
return
model
def
VGG19
(
name
=
"vgg19"
):
model
=
VGGNet
(
layers
=
19
,
name
=
name
)
return
model
PaddleCV/PaddleGAN/scripts/run_SPADE.sh
0 → 100644
浏览文件 @
bf0899a5
export
FLAGS_eager_delete_tensor_gb
=
0.0
export
FLAGS_fast_eager_deletion_mode
=
1
export
FLAGS_fraction_of_gpu_memory_to_use
=
0.01
CUDA_VISIBLE_DEVICES
=
0 python train.py
--model_net
SPADE
--dataset
cityscapes
--train_list
train_list
--test_list
val_list
--crop_type
Random
--batch_size
1
--epoch
200
--load_height
612
--load_width
1124
--crop_height
512
--crop_width
1024
--label_nc
36
PaddleCV/PaddleGAN/train.py
浏览文件 @
bf0899a5
...
...
@@ -30,7 +30,7 @@ import trainer
def
train
(
cfg
):
MODELS
=
[
"CGAN"
,
"DCGAN"
,
"Pix2pix"
,
"CycleGAN"
,
"StarGAN"
,
"AttGAN"
,
"STGAN"
"CGAN"
,
"DCGAN"
,
"Pix2pix"
,
"CycleGAN"
,
"StarGAN"
,
"AttGAN"
,
"STGAN"
,
"SPADE"
]
if
cfg
.
model_net
not
in
MODELS
:
raise
NotImplementedError
(
"{} is not support!"
.
format
(
cfg
.
model_net
))
...
...
PaddleCV/PaddleGAN/trainer/SPADE.py
0 → 100644
浏览文件 @
bf0899a5
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
network.SPADE_network
import
SPADE_model
from
util
import
utility
import
paddle.fluid
as
fluid
import
sys
import
time
import
network.vgg
as
vgg
import
pickle
as
pkl
import
numpy
as
np
class
GTrainer
():
def
__init__
(
self
,
input_label
,
input_img
,
input_ins
,
cfg
,
step_per_epoch
):
self
.
cfg
=
cfg
self
.
program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
self
.
program
):
model
=
SPADE_model
()
input
=
input_label
if
not
cfg
.
no_instance
:
input
=
fluid
.
layers
.
concat
([
input_label
,
input_ins
],
1
)
self
.
fake_B
=
model
.
network_G
(
input
,
"generator"
,
cfg
=
cfg
)
self
.
fake_B
.
persistable
=
True
self
.
infer_program
=
self
.
program
.
clone
()
fake_concat
=
fluid
.
layers
.
concat
([
input
,
self
.
fake_B
],
1
)
real_concat
=
fluid
.
layers
.
concat
([
input
,
input_img
],
1
)
fake_and_real
=
fluid
.
layers
.
concat
([
fake_concat
,
real_concat
],
0
)
pred
=
model
.
network_D
(
fake_and_real
,
"discriminator"
,
cfg
)
if
type
(
pred
)
==
list
:
self
.
pred_fake
=
[]
self
.
pred_real
=
[]
for
p
in
pred
:
self
.
pred_fake
.
append
([
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
([
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
else
:
self
.
pred_fake
=
pred
[:
pred
.
shape
[
0
]
//
2
]
self
.
pred_real
=
pred
[
pred
.
shape
[
0
]
//
2
:]
###GAN Loss hinge
if
isinstance
(
self
.
pred_fake
,
list
):
self
.
gan_loss
=
0
for
pred_i
in
self
.
pred_fake
:
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
loss_i
=
-
1
*
fluid
.
layers
.
reduce_mean
(
pred_i
)
self
.
gan_loss
+=
loss_i
self
.
gan_loss
/=
len
(
self
.
pred_fake
)
else
:
self
.
gan_loss
=
-
1
*
fluid
.
layers
.
reduce_mean
(
self
.
pred_fake
)
self
.
gan_loss
.
persistable
=
True
#####GAN Feat loss
num_D
=
len
(
self
.
pred_fake
)
self
.
gan_feat_loss
=
0.0
for
i
in
range
(
num_D
):
num_intermediate_outputs
=
len
(
self
.
pred_fake
[
i
])
-
1
for
j
in
range
(
num_intermediate_outputs
):
self
.
gan_feat_loss
=
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
self
.
pred_fake
[
i
][
j
],
y
=
self
.
pred_real
[
i
][
j
])))
*
cfg
.
lambda_feat
/
num_D
self
.
gan_feat_loss
.
persistable
=
True
########VGG Feat loss
weights
=
[
1.0
/
32
,
1.0
/
16
,
1.0
/
8
,
1.0
/
4
,
1.0
]
self
.
vgg
=
vgg
.
VGG19
()
fake_vgg
=
self
.
vgg
.
net
(
self
.
fake_B
)
real_vgg
=
self
.
vgg
.
net
(
input_img
)
self
.
vgg_loss
=
0.0
for
i
in
range
(
len
(
fake_vgg
)):
self
.
vgg_loss
+=
weights
[
i
]
*
fluid
.
layers
.
reduce_mean
(
fluid
.
layers
.
abs
(
fluid
.
layers
.
elementwise_sub
(
x
=
fake_vgg
[
i
],
y
=
real_vgg
[
i
])))
self
.
vgg_loss
.
persistable
=
True
self
.
g_loss
=
(
self
.
gan_loss
+
self
.
gan_feat_loss
+
self
.
vgg_loss
)
/
3
lr
=
cfg
.
learning_rate
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"generator"
):
vars
.
append
(
var
.
name
)
self
.
param
=
vars
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_G"
)
optimizer
.
minimize
(
self
.
g_loss
,
parameter_list
=
vars
)
class
DTrainer
():
def
__init__
(
self
,
input_label
,
input_img
,
input_ins
,
fake_B
,
cfg
,
step_per_epoch
):
self
.
program
=
fluid
.
default_main_program
().
clone
()
lr
=
cfg
.
learning_rate
with
fluid
.
program_guard
(
self
.
program
):
model
=
SPADE_model
()
input
=
input_label
if
not
cfg
.
no_instance
:
input
=
fluid
.
layers
.
concat
([
input_label
,
input_ins
],
1
)
fake_concat
=
fluid
.
layers
.
concat
([
input
,
fake_B
],
1
)
real_concat
=
fluid
.
layers
.
concat
([
input
,
input_img
],
1
)
fake_and_real
=
fluid
.
layers
.
concat
([
fake_concat
,
real_concat
],
0
)
pred
=
model
.
network_D
(
fake_and_real
,
"discriminator"
,
cfg
)
if
type
(
pred
)
==
list
:
self
.
pred_fake
=
[]
self
.
pred_real
=
[]
for
p
in
pred
:
self
.
pred_fake
.
append
([
tensor
[:
tensor
.
shape
[
0
]
//
2
]
for
tensor
in
p
])
self
.
pred_real
.
append
([
tensor
[
tensor
.
shape
[
0
]
//
2
:]
for
tensor
in
p
])
else
:
self
.
pred_fake
=
pred
[:
pred
.
shape
[
0
]
//
2
]
self
.
pred_real
=
pred
[
pred
.
shape
[
0
]
//
2
:]
#####gan loss
self
.
gan_loss_fake
=
0
for
pred_i
in
self
.
pred_fake
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
-
1
*
pred_i
-
1
,
zeros
)
loss_i
=
-
1
*
fluid
.
layers
.
reduce_mean
(
minval
)
self
.
gan_loss_fake
+=
loss_i
self
.
gan_loss_fake
/=
len
(
self
.
pred_fake
)
self
.
gan_loss_real
=
0
for
pred_i
in
self
.
pred_real
:
zeros
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
pred_i
[
-
1
],
shape
=
pred_i
[
-
1
].
shape
,
value
=
0
,
dtype
=
'float32'
)
if
isinstance
(
pred_i
,
list
):
pred_i
=
pred_i
[
-
1
]
minval
=
fluid
.
layers
.
elementwise_min
(
pred_i
-
1
,
zeros
)
loss_i
=
-
1
*
fluid
.
layers
.
reduce_mean
(
minval
)
self
.
gan_loss_real
+=
loss_i
self
.
gan_loss_real
/=
len
(
self
.
pred_real
)
self
.
gan_loss_real
.
persistable
=
True
self
.
gan_loss_fake
.
persistable
=
True
self
.
d_loss
=
0.5
*
(
self
.
gan_loss_real
+
self
.
gan_loss_fake
)
vars
=
[]
for
var
in
self
.
program
.
list_vars
():
if
fluid
.
io
.
is_parameter
(
var
)
and
var
.
name
.
startswith
(
"discriminator"
):
vars
.
append
(
var
.
name
)
self
.
param
=
vars
if
cfg
.
epoch
<=
100
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
lr
,
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
else
:
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
[
99
*
step_per_epoch
]
+
[
x
*
step_per_epoch
for
x
in
range
(
100
,
cfg
.
epoch
-
1
)
],
values
=
[
lr
]
+
[
lr
*
(
1.0
-
(
x
-
99.0
)
/
101.0
)
for
x
in
range
(
100
,
cfg
.
epoch
)
]),
beta1
=
0.5
,
beta2
=
0.999
,
name
=
"net_D"
)
optimizer
.
minimize
(
self
.
d_loss
,
parameter_list
=
vars
)
class
SPADE
(
object
):
def
add_special_args
(
self
,
parser
):
parser
.
add_argument
(
'--vgg19_pretrain'
,
type
=
str
,
default
=
"./VGG19_pretrained"
,
help
=
"VGG19 pretrained model for vgg loss"
)
parser
.
add_argument
(
'--crop_width'
,
type
=
int
,
default
=
1024
,
help
=
"crop width for training SPADE"
)
parser
.
add_argument
(
'--crop_height'
,
type
=
int
,
default
=
512
,
help
=
"crop height for training SPADE"
)
parser
.
add_argument
(
'--load_width'
,
type
=
int
,
default
=
1124
,
help
=
"load width for training SPADE"
)
parser
.
add_argument
(
'--load_height'
,
type
=
int
,
default
=
612
,
help
=
"load height for training SPADE"
)
parser
.
add_argument
(
'--d_nlayers'
,
type
=
int
,
default
=
4
,
help
=
"num of discriminator layers for SPADE"
)
parser
.
add_argument
(
'--label_nc'
,
type
=
int
,
default
=
36
,
help
=
"label numbers of SPADE"
)
parser
.
add_argument
(
'--ngf'
,
type
=
int
,
default
=
64
,
help
=
"base channels of generator in SPADE"
)
parser
.
add_argument
(
'--ndf'
,
type
=
int
,
default
=
64
,
help
=
"base channels of discriminator in SPADE"
)
parser
.
add_argument
(
'--num_D'
,
type
=
int
,
default
=
2
,
help
=
"number of discriminators in SPADE"
)
parser
.
add_argument
(
'--lambda_feat'
,
type
=
float
,
default
=
10
,
help
=
"weight term of feature loss"
)
parser
.
add_argument
(
'--lambda_vgg'
,
type
=
float
,
default
=
10
,
help
=
"weight term of vgg loss"
)
parser
.
add_argument
(
'--no_instance'
,
type
=
bool
,
default
=
False
,
help
=
"Whether to use instance label."
)
return
parser
def
__init__
(
self
,
cfg
=
None
,
train_reader
=
None
,
test_reader
=
None
,
batch_num
=
1
):
self
.
cfg
=
cfg
self
.
train_reader
=
train_reader
self
.
test_reader
=
test_reader
self
.
batch_num
=
batch_num
def
build_model
(
self
):
data_shape
=
[
-
1
,
3
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
label_shape
=
[
-
1
,
self
.
cfg
.
label_nc
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
edge_shape
=
[
-
1
,
1
,
self
.
cfg
.
crop_height
,
self
.
cfg
.
crop_width
]
input_A
=
fluid
.
layers
.
data
(
name
=
'input_label'
,
shape
=
label_shape
,
dtype
=
'float32'
)
input_B
=
fluid
.
layers
.
data
(
name
=
'input_img'
,
shape
=
data_shape
,
dtype
=
'float32'
)
input_C
=
fluid
.
layers
.
data
(
name
=
'input_ins'
,
shape
=
edge_shape
,
dtype
=
'float32'
)
input_fake
=
fluid
.
layers
.
data
(
name
=
'input_fake'
,
shape
=
data_shape
,
dtype
=
'float32'
)
gen_trainer
=
GTrainer
(
input_A
,
input_B
,
input_C
,
self
.
cfg
,
self
.
batch_num
)
dis_trainer
=
DTrainer
(
input_A
,
input_B
,
input_C
,
input_fake
,
self
.
cfg
,
self
.
batch_num
)
py_reader
=
fluid
.
io
.
PyReader
(
feed_list
=
[
input_A
,
input_B
,
input_C
],
capacity
=
4
,
## batch_size * 4
iterable
=
True
,
use_double_buffer
=
True
)
py_reader
.
decorate_batch_generator
(
self
.
train_reader
,
places
=
fluid
.
cuda_places
()
if
self
.
cfg
.
use_gpu
else
fluid
.
cpu_places
())
# prepare environment
place
=
fluid
.
CUDAPlace
(
0
)
if
self
.
cfg
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
gen_trainer
.
vgg
.
load_vars
(
exe
,
gen_trainer
.
program
,
self
.
cfg
.
vgg19_pretrain
)
if
self
.
cfg
.
init_model
:
utility
.
init_checkpoints
(
self
.
cfg
,
exe
,
gen_trainer
,
"net_G"
)
utility
.
init_checkpoints
(
self
.
cfg
,
exe
,
dis_trainer
,
"net_D"
)
### memory optim
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
enable_inplace
=
False
build_strategy
.
sync_batch_norm
=
True
gen_trainer_program
=
fluid
.
CompiledProgram
(
gen_trainer
.
program
).
with_data_parallel
(
loss_name
=
gen_trainer
.
g_loss
.
name
,
build_strategy
=
build_strategy
)
dis_trainer_program
=
fluid
.
CompiledProgram
(
dis_trainer
.
program
).
with_data_parallel
(
loss_name
=
dis_trainer
.
d_loss
.
name
,
build_strategy
=
build_strategy
)
t_time
=
0
for
epoch_id
in
range
(
self
.
cfg
.
epoch
):
batch_id
=
0
for
tensor
in
py_reader
():
data_A
,
data_B
,
data_C
=
tensor
[
0
][
'input_A'
],
tensor
[
0
][
'input_B'
],
tensor
[
0
][
'input_C'
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_B
=
fluid
.
LoDTensor
()
tensor_C
=
fluid
.
LoDTensor
()
tensor_A
.
set
(
data_A
,
place
)
tensor_B
.
set
(
data_B
,
place
)
tensor_C
.
set
(
data_C
,
place
)
s_time
=
time
.
time
()
# optimize the generator network
g_loss_gan
,
g_loss_vgg
,
g_loss_feat
,
fake_B_tmp
=
exe
.
run
(
gen_trainer_program
,
fetch_list
=
[
gen_trainer
.
gan_loss
,
gen_trainer
.
vgg_loss
,
gen_trainer
.
gan_feat_loss
,
gen_trainer
.
fake_B
],
feed
=
{
"input_label"
:
tensor_A
,
"input_img"
:
tensor_B
,
"input_ins"
:
tensor_C
})
# optimize the discriminator network
d_loss_real
,
d_loss_fake
=
exe
.
run
(
dis_trainer_program
,
fetch_list
=
[
dis_trainer
.
gan_loss_real
,
dis_trainer
.
gan_loss_fake
],
feed
=
{
"input_label"
:
tensor_A
,
"input_img"
:
tensor_B
,
"input_ins"
:
tensor_C
,
"input_fake"
:
fake_B_tmp
})
batch_time
=
time
.
time
()
-
s_time
t_time
+=
batch_time
if
batch_id
%
self
.
cfg
.
print_freq
==
0
:
print
(
"epoch{}: batch{}:
\n\
g_loss_gan: {}; g_loss_vgg: {}; g_loss_feat: {}
\n\
d_loss_real: {}; d_loss_fake: {};
\n\
Batch_time_cost: {:.2f}"
.
format
(
epoch_id
,
batch_id
,
g_loss_gan
[
0
],
g_loss_vgg
[
0
],
g_loss_feat
[
0
],
d_loss_real
[
0
],
d_loss_fake
[
0
],
batch_time
))
sys
.
stdout
.
flush
()
batch_id
+=
1
if
self
.
cfg
.
run_test
:
test_program
=
gen_trainer
.
infer_program
image_name
=
fluid
.
layers
.
data
(
name
=
'image_name'
,
shape
=
[
self
.
cfg
.
batch_size
],
dtype
=
"int32"
)
test_py_reader
=
fluid
.
io
.
PyReader
(
feed_list
=
[
input_A
,
input_B
,
image_name
],
capacity
=
4
,
## batch_size * 4
iterable
=
True
,
use_double_buffer
=
True
)
test_py_reader
.
decorate_batch_generator
(
self
.
test_reader
,
places
=
fluid
.
cuda_places
()
if
self
.
cfg
.
use_gpu
else
fluid
.
cpu_places
())
utility
.
save_test_image
(
epoch_id
,
self
.
cfg
,
exe
,
place
,
test_program
,
gen_trainer
,
test_py_reader
)
if
self
.
cfg
.
save_checkpoints
:
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
exe
,
gen_trainer
,
"net_G"
)
utility
.
checkpoints
(
epoch_id
,
self
.
cfg
,
exe
,
dis_trainer
,
"net_D"
)
PaddleCV/PaddleGAN/util/utility.py
浏览文件 @
bf0899a5
...
...
@@ -170,6 +170,30 @@ def save_test_image(epoch,
res_inputB
=
Image
.
fromarray
(((
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
res_inputB
.
save
(
os
.
path
.
join
(
out_path
,
inputB_name
))
elif
cfg
.
model_net
==
"SPADE"
:
for
data
in
A_test_reader
():
data_A
,
data_B
,
data_C
,
name
=
data
[
0
][
'input_A'
],
data
[
0
][
'input_B'
],
data
[
0
][
'input_C'
],
data
[
0
][
'image_name'
]
tensor_A
=
fluid
.
LoDTensor
()
tensor_B
=
fluid
.
LoDTensor
()
tensor_C
=
fluid
.
LoDTensor
()
tensor_A
.
set
(
data_A
,
place
)
tensor_B
.
set
(
data_B
,
place
)
tensor_C
.
set
(
data_C
,
place
)
fake_B_temp
=
exe
.
run
(
test_program
,
fetch_list
=
[
g_trainer
.
fake_B
],
feed
=
{
"input_label"
:
tensor_A
,
"input_img"
:
tensor_B
,
"input_ins"
:
tensor_C
})
fake_B_temp
=
np
.
squeeze
(
fake_B_temp
[
0
]).
transpose
([
1
,
2
,
0
])
input_B_temp
=
np
.
squeeze
(
data_B
[
0
]).
transpose
([
1
,
2
,
0
])
res_fakeB
=
Image
.
fromarray
(((
fake_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
res_fakeB
.
save
(
out_path
+
"/fakeB_"
+
str
(
epoch
)
+
"_"
+
name
)
res_real
=
Image
.
fromarray
(((
input_B_temp
+
1
)
*
127.5
).
astype
(
np
.
uint8
))
res_real
.
save
(
out_path
+
"/real_"
+
str
(
epoch
)
+
"_"
+
name
)
elif
cfg
.
model_net
==
"StarGAN"
:
for
data
in
A_test_reader
():
real_img
,
label_org
,
label_trg
,
image_name
=
data
[
0
][
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录