Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bbf4aa7f
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bbf4aa7f
编写于
1月 07, 2019
作者:
J
JiabinYang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix reader bug
上级
41351679
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
56 addition
and
36 deletion
+56
-36
fluid/PaddleRec/word2vec/infer.py
fluid/PaddleRec/word2vec/infer.py
+19
-5
fluid/PaddleRec/word2vec/preprocess.py
fluid/PaddleRec/word2vec/preprocess.py
+11
-14
fluid/PaddleRec/word2vec/reader.py
fluid/PaddleRec/word2vec/reader.py
+26
-16
fluid/PaddleRec/word2vec/train.py
fluid/PaddleRec/word2vec/train.py
+0
-1
未找到文件。
fluid/PaddleRec/word2vec/infer.py
浏览文件 @
bbf4aa7f
...
...
@@ -131,9 +131,25 @@ def build_small_test_case(emb):
desc5
=
"old - older + deeper = deep"
label5
=
word_to_id
[
"deep"
]
test_cases
=
[
emb1
,
emb2
,
emb3
,
emb4
,
emb5
]
test_case_desc
=
[
desc1
,
desc2
,
desc3
,
desc4
,
desc5
]
test_labels
=
[
label1
,
label2
,
label3
,
label4
,
label5
]
emb6
=
emb
[
word_to_id
[
'boy'
]]
desc6
=
"boy"
label6
=
word_to_id
[
"boy"
]
emb7
=
emb
[
word_to_id
[
'king'
]]
desc7
=
"king"
label7
=
word_to_id
[
"king"
]
emb8
=
emb
[
word_to_id
[
'sun'
]]
desc8
=
"sun"
label8
=
word_to_id
[
"sun"
]
emb9
=
emb
[
word_to_id
[
'key'
]]
desc9
=
"key"
label9
=
word_to_id
[
"key"
]
test_cases
=
[
emb1
,
emb2
,
emb3
,
emb4
,
emb5
,
emb6
,
emb7
,
emb8
,
emb9
]
test_case_desc
=
[
desc1
,
desc2
,
desc3
,
desc4
,
desc5
,
desc6
,
desc7
,
desc8
,
desc9
]
test_labels
=
[
label1
,
label2
,
label3
,
label4
,
label5
,
label6
,
label7
,
label8
,
label9
]
return
norm
(
np
.
array
(
test_cases
)),
test_case_desc
,
test_labels
...
...
@@ -229,8 +245,6 @@ def infer_during_train(args):
while
True
:
time
.
sleep
(
60
)
current_list
=
os
.
listdir
(
args
.
model_output_dir
)
# logger.info("current_list is : {}".format(current_list))
# logger.info("model_file_list is : {}".format(model_file_list))
if
set
(
model_file_list
)
==
set
(
current_list
):
if
solved_new
:
solved_new
=
False
...
...
fluid/PaddleRec/word2vec/preprocess.py
浏览文件 @
bbf4aa7f
...
...
@@ -3,6 +3,7 @@
import
re
import
six
import
argparse
import
io
prog
=
re
.
compile
(
"[^a-z ]"
,
flags
=
0
)
word_count
=
dict
()
...
...
@@ -83,7 +84,6 @@ def native_to_unicode(s):
return
_to_unicode
(
s
)
except
UnicodeDecodeError
:
res
=
_to_unicode
(
s
,
ignore_errors
=
True
)
tf
.
logging
.
info
(
"Ignoring Unicode error, outputting: %s"
%
res
)
return
res
...
...
@@ -199,14 +199,15 @@ def preprocess(args):
# word to count
if
args
.
with_other_dict
:
with
open
(
args
.
other_dict_path
,
'r
'
)
as
f
:
with
io
.
open
(
args
.
other_dict_path
,
'r'
,
encoding
=
'utf-8
'
)
as
f
:
for
line
in
f
:
word_count
[
native_to_unicode
(
line
.
strip
())]
=
1
if
args
.
is_local
:
for
i
in
range
(
1
,
100
):
with
open
(
args
.
data_path
+
"/news.en-000{:0>2d}-of-00100"
.
format
(
i
))
as
f
:
with
io
.
open
(
args
.
data_path
+
"/news.en-000{:0>2d}-of-00100"
.
format
(
i
),
encoding
=
'utf-8'
)
as
f
:
for
line
in
f
:
line
=
strip_lines
(
line
)
words
=
line
.
split
()
...
...
@@ -231,21 +232,17 @@ def preprocess(args):
path_table
,
path_code
,
word_code_len
=
build_Huffman
(
word_count
,
40
)
with
open
(
args
.
dict_path
,
'w+
'
)
as
f
:
with
io
.
open
(
args
.
dict_path
,
'w+'
,
encoding
=
'utf-8
'
)
as
f
:
for
k
,
v
in
word_count
.
items
():
f
.
write
(
k
.
encode
(
"utf-8"
)
+
" "
+
str
(
v
).
encode
(
"utf-8"
)
+
'
\n
'
)
f
.
write
(
k
+
" "
+
str
(
v
)
+
'
\n
'
)
with
open
(
args
.
dict_path
+
"_ptable"
,
'w+
'
)
as
f2
:
with
io
.
open
(
args
.
dict_path
+
"_ptable"
,
'w+'
,
encoding
=
'utf-8
'
)
as
f2
:
for
pk
,
pv
in
path_table
.
items
():
f2
.
write
(
pk
.
encode
(
"utf-8"
)
+
'
\t
'
+
' '
.
join
((
str
(
x
).
encode
(
"utf-8"
)
for
x
in
pv
))
+
'
\n
'
)
f2
.
write
(
pk
+
'
\t
'
+
' '
.
join
((
str
(
x
)
for
x
in
pv
))
+
'
\n
'
)
with
open
(
args
.
dict_path
+
"_pcode"
,
'w+
'
)
as
f3
:
with
io
.
open
(
args
.
dict_path
+
"_pcode"
,
'w+'
,
encoding
=
'utf-8
'
)
as
f3
:
for
pck
,
pcv
in
path_code
.
items
():
f3
.
write
(
pck
.
encode
(
"utf-8"
)
+
'
\t
'
+
' '
.
join
((
str
(
x
).
encode
(
"utf-8"
)
for
x
in
pcv
))
+
'
\n
'
)
f3
.
write
(
pck
+
'
\t
'
+
' '
.
join
((
str
(
x
)
for
x
in
pcv
))
+
'
\n
'
)
if
__name__
==
"__main__"
:
...
...
fluid/PaddleRec/word2vec/reader.py
浏览文件 @
bbf4aa7f
...
...
@@ -2,8 +2,8 @@
import
numpy
as
np
import
preprocess
import
logging
import
io
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
...
...
@@ -42,6 +42,7 @@ class Word2VecReader(object):
self
.
num_non_leaf
=
0
self
.
word_to_id_
=
dict
()
self
.
id_to_word
=
dict
()
self
.
word_count
=
dict
()
self
.
word_to_path
=
dict
()
self
.
word_to_code
=
dict
()
self
.
trainer_id
=
trainer_id
...
...
@@ -51,20 +52,19 @@ class Word2VecReader(object):
word_counts
=
[]
word_id
=
0
with
open
(
dict_path
,
'r
'
)
as
f
:
with
io
.
open
(
dict_path
,
'r'
,
encoding
=
'utf-8
'
)
as
f
:
for
line
in
f
:
line
=
line
.
decode
(
encoding
=
'UTF-8'
)
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
self
.
word_count
[
word
]
=
count
self
.
word_to_id_
[
word
]
=
word_id
self
.
id_to_word
[
word_id
]
=
word
#build id to word dict
word_id
+=
1
word_counts
.
append
(
count
)
word_all_count
+=
count
with
open
(
dict_path
+
"_word_to_id_"
,
'w+
'
)
as
f6
:
with
io
.
open
(
dict_path
+
"_word_to_id_"
,
'w+'
,
encoding
=
'utf-8
'
)
as
f6
:
for
k
,
v
in
self
.
word_to_id_
.
items
():
f6
.
write
(
k
.
encode
(
"utf-8"
)
+
" "
+
str
(
v
).
encode
(
"utf-8"
)
+
'
\n
'
)
f6
.
write
(
k
+
" "
+
str
(
v
)
+
'
\n
'
)
self
.
dict_size
=
len
(
self
.
word_to_id_
)
self
.
word_frequencys
=
[
...
...
@@ -73,7 +73,7 @@ class Word2VecReader(object):
print
(
"dict_size = "
+
str
(
self
.
dict_size
))
+
" word_all_count = "
+
str
(
word_all_count
)
with
open
(
dict_path
+
"_ptable"
,
'r
'
)
as
f2
:
with
io
.
open
(
dict_path
+
"_ptable"
,
'r'
,
encoding
=
'utf-8
'
)
as
f2
:
for
line
in
f2
:
self
.
word_to_path
[
line
.
split
(
'
\t
'
)[
0
]]
=
np
.
fromstring
(
line
.
split
(
'
\t
'
)[
1
],
dtype
=
int
,
sep
=
' '
)
...
...
@@ -81,9 +81,8 @@ class Word2VecReader(object):
line
.
split
(
'
\t
'
)[
1
],
dtype
=
int
,
sep
=
' '
)[
0
]
print
(
"word_ptable dict_size = "
+
str
(
len
(
self
.
word_to_path
)))
with
open
(
dict_path
+
"_pcode"
,
'r
'
)
as
f3
:
with
io
.
open
(
dict_path
+
"_pcode"
,
'r'
,
encoding
=
'utf-8
'
)
as
f3
:
for
line
in
f3
:
line
=
line
.
decode
(
encoding
=
'UTF-8'
)
self
.
word_to_code
[
line
.
split
(
'
\t
'
)[
0
]]
=
np
.
fromstring
(
line
.
split
(
'
\t
'
)[
1
],
dtype
=
int
,
sep
=
' '
)
print
(
"word_pcode dict_size = "
+
str
(
len
(
self
.
word_to_code
)))
...
...
@@ -109,13 +108,15 @@ class Word2VecReader(object):
def
train
(
self
,
with_hs
):
def
_reader
():
for
file
in
self
.
filelist
:
with
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
)
as
f
:
with
io
.
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
logger
.
info
(
"running data in {}"
.
format
(
self
.
data_path_
+
"/"
+
file
))
count
=
1
for
line
in
f
:
if
self
.
trainer_id
==
count
%
self
.
trainer_num
:
line
=
preprocess
.
strip_lines
(
line
)
line
=
preprocess
.
strip_lines
(
line
,
self
.
word_count
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
...
...
@@ -131,13 +132,15 @@ class Word2VecReader(object):
def
_reader_hs
():
for
file
in
self
.
filelist
:
with
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
)
as
f
:
with
io
.
open
(
self
.
data_path_
+
"/"
+
file
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
logger
.
info
(
"running data in {}"
.
format
(
self
.
data_path_
+
"/"
+
file
))
count
=
1
for
line
in
f
:
if
self
.
trainer_id
==
count
%
self
.
trainer_num
:
line
=
preprocess
.
strip_lines
(
line
)
line
=
preprocess
.
strip_lines
(
line
,
self
.
word_count
)
word_ids
=
[
self
.
word_to_id_
[
word
]
for
word
in
line
.
split
()
if
word
in
self
.
word_to_id_
...
...
@@ -164,13 +167,20 @@ class Word2VecReader(object):
if
__name__
==
"__main__"
:
window_size
=
10
window_size
=
5
reader
=
Word2VecReader
(
"./data/1-billion_dict"
,
"./data/1-billion-word-language-modeling-benchmark-r13output/training-monolingual.tokenized.shuffled/"
,
[
"news.en-00001-of-00100"
],
0
,
1
)
reader
=
Word2VecReader
(
"data/enwik9_dict"
,
"data/enwik9"
,
window_size
)
i
=
0
for
x
,
y
in
reader
.
train
()():
# print(reader.train(True))
for
x
,
y
,
z
,
f
in
reader
.
train
(
True
)():
print
(
"x: "
+
str
(
x
))
print
(
"y: "
+
str
(
y
))
print
(
"path: "
+
str
(
z
))
print
(
"code: "
+
str
(
f
))
print
(
"
\n
"
)
if
i
==
10
:
exit
(
0
)
...
...
fluid/PaddleRec/word2vec/train.py
浏览文件 @
bbf4aa7f
...
...
@@ -135,7 +135,6 @@ def convert_python_to_tensor(batch_size, sample_reader, is_hs):
for
sample
in
sample_reader
():
for
i
,
fea
in
enumerate
(
sample
):
result
[
i
].
append
(
fea
)
if
len
(
result
[
0
])
==
batch_size
:
tensor_result
=
[]
for
tensor
in
result
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录