Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
bbeb1e98
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
bbeb1e98
编写于
11月 30, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add env
上级
615e4fca
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
106 addition
and
39 deletion
+106
-39
policy_gradient/brain.py
policy_gradient/brain.py
+26
-33
policy_gradient/env.py
policy_gradient/env.py
+56
-0
policy_gradient/run.py
policy_gradient/run.py
+24
-6
未找到文件。
policy_gradient/brain.py
浏览文件 @
bbeb1e98
import
numpy
as
np
import
paddle.v2
as
paddle
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.framework
as
framework
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.io
import
save_persistables
,
load_persistables
from
paddle.v2.fluid.optimizer
import
SGDOptimizer
import
paddle.v2.fluid
as
fluid
# reproducible
np
.
random
.
seed
(
1
)
...
...
@@ -25,38 +19,42 @@ class PolicyGradient:
self
.
gamma
=
reward_decay
self
.
ep_obs
,
self
.
ep_as
,
self
.
ep_rs
=
[],
[],
[]
self
.
build_net
(
self
)
self
.
place
=
core
.
CPUPlace
()
self
.
exe
=
Executor
(
self
.
place
)
self
.
place
=
fluid
.
CPUPlace
()
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
def
build_net
(
self
):
obs
=
layers
.
data
(
name
=
'obs'
,
shape
=
[
self
.
n_features
],
d
ata_
type
=
'float32'
)
acts
=
layers
.
data
(
name
=
'acts'
,
shape
=
[
1
],
data_type
=
'int32
'
)
vt
=
layers
.
data
(
name
=
'vt'
,
shape
=
[
1
],
data_
type
=
'float32'
)
obs
=
fluid
.
layers
.
data
(
name
=
'obs'
,
shape
=
[
self
.
n_features
],
dtype
=
'float32'
)
acts
=
fluid
.
layers
.
data
(
name
=
'acts'
,
shape
=
[
1
],
dtype
=
'int64
'
)
vt
=
fluid
.
layers
.
data
(
name
=
'vt'
,
shape
=
[
1
],
d
type
=
'float32'
)
# fc1
fc1
=
layers
.
fc
(
fc1
=
fluid
.
layers
.
fc
(
input
=
obs
,
size
=
10
,
act
=
"tanh"
# tanh activation
)
# fc2
all_act_prob
=
layers
.
fc
(
input
=
fc1
,
size
=
self
.
n_actions
,
act
=
"softmax"
)
self
.
all_act_prob
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
self
.
n_actions
,
act
=
"softmax"
)
# to maximize total reward (log_p * R) is to minimize -(log_p * R)
neg_log_prob
=
layers
.
cross_entropy
(
input
=
all_act_prob
,
neg_log_prob
=
fluid
.
layers
.
cross_entropy
(
input
=
self
.
all_act_prob
,
label
=
acts
)
# this is negative log of chosen action
neg_log_prob_weight
=
layers
.
elementwise_mul
(
x
=
neg_log_prob
,
y
=
vt
)
loss
=
layers
.
reduce_mean
(
x
=
neg_log_prob_weight
)
# reward guided loss
neg_log_prob_weight
=
fluid
.
layers
.
elementwise_mul
(
x
=
neg_log_prob
,
y
=
vt
)
loss
=
fluid
.
layers
.
reduce_mean
(
x
=
neg_log_prob_weight
)
# reward guided loss
self
.
optimizer
=
SGDOptimizer
(
self
.
lr
).
minimize
(
loss
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
self
.
lr
)
sgd_optimizer
.
minimize
(
loss
)
self
.
exe
.
run
(
fluid
.
default_startup_program
())
def
choose_action
(
self
,
observation
):
prob_weights
=
self
.
exe
.
run
(
f
ramework
.
default_main_program
().
prune
(
all_act_prob
),
f
luid
.
default_main_program
().
prune
(
self
.
all_act_prob
),
feed
=
{
"obs"
:
observation
[
np
.
newaxis
,
:]},
fetch_list
=
[
all_act_prob
])
fetch_list
=
[
self
.
all_act_prob
])
prob_weights
=
np
.
array
(
prob_weights
[
0
])
action
=
np
.
random
.
choice
(
range
(
prob_weights
.
shape
[
1
]),
...
...
@@ -71,23 +69,18 @@ class PolicyGradient:
def
learn
(
self
):
# discount and normalize episode reward
discounted_ep_rs_norm
=
self
.
_discount_and_norm_rewards
()
#print framework.default_main_program()
tensor_obs
=
core
.
LoDTensor
()
tensor_obs
.
set
(
np
.
vstack
(
self
.
ep_obs
),
self
.
place
)
tensor_as
=
core
.
LoDTensor
()
tensor_as
.
set
(
np
.
array
(
self
.
ep_as
),
self
.
place
)
tensor_vt
=
core
.
LoDTensor
()
tensor_vt
.
set
(
discounted_ep_rs_norm
,
self
.
place
)
tensor_obs
=
np
.
vstack
(
self
.
ep_obs
).
astype
(
"float32"
)
tensor_as
=
np
.
array
(
self
.
ep_as
).
astype
(
"int64"
)
tensor_as
=
tensor_as
.
reshape
([
tensor_as
.
shape
[
0
],
1
])
tensor_vt
=
discounted_ep_rs_norm
.
astype
(
"float32"
)[:,
np
.
newaxis
]
# train on episode
self
.
exe
.
run
(
f
ramework
.
default_main_program
(),
f
luid
.
default_main_program
(),
feed
=
{
"obs"
:
tensor_obs
,
# shape=[None, n_obs]
"acts"
:
tensor_as
,
# shape=[None, ]
"vt"
:
tensor_vt
# shape=[None, ]
})
self
.
ep_obs
,
self
.
ep_as
,
self
.
ep_rs
=
[],
[],
[]
# empty episode data
return
discounted_ep_rs_norm
...
...
policy_gradient/env.py
0 → 100644
浏览文件 @
bbeb1e98
import
time
import
sys
import
numpy
as
np
class
Env
():
def
__init__
(
self
,
stage_len
,
interval
):
self
.
stage_len
=
stage_len
self
.
end
=
self
.
stage_len
-
1
self
.
position
=
0
self
.
interval
=
interval
self
.
step
=
0
self
.
epoch
=
-
1
self
.
render
=
False
def
reset
(
self
):
self
.
end
=
self
.
stage_len
-
1
self
.
position
=
0
self
.
epoch
+=
1
self
.
step
=
0
if
self
.
render
:
self
.
draw
(
True
)
def
status
(
self
):
s
=
np
.
zeros
([
self
.
stage_len
]).
astype
(
"float32"
)
s
[
self
.
position
]
=
1
return
s
def
move
(
self
,
action
):
self
.
step
+=
1
reward
=
0.0
done
=
False
if
action
==
0
:
self
.
position
=
max
(
0
,
self
.
position
-
1
)
else
:
self
.
position
=
min
(
self
.
end
,
self
.
position
+
1
)
if
self
.
render
:
self
.
draw
()
if
self
.
position
==
self
.
end
:
reward
=
1.0
done
=
True
return
reward
,
done
,
self
.
status
()
def
draw
(
self
,
new_line
=
False
):
if
new_line
:
print
""
else
:
print
"
\r
"
,
for
i
in
range
(
self
.
stage_len
):
if
i
==
self
.
position
:
sys
.
stdout
.
write
(
"O"
)
else
:
sys
.
stdout
.
write
(
"-"
)
sys
.
stdout
.
write
(
" epoch: %d; steps: %d"
%
(
self
.
epoch
,
self
.
step
))
sys
.
stdout
.
flush
()
time
.
sleep
(
self
.
interval
)
policy_gradient/run.py
浏览文件 @
bbeb1e98
from
brain
import
PolicyGradient
from
env
import
Env
import
numpy
as
np
n_features
=
10
n_actions
=
4
n_actions
=
2
interval
=
0.01
stage_len
=
10
epoches
=
10000
if
__name__
==
"__main__"
:
brain
=
PolicyGradient
(
n_actions
,
n_features
)
brain
.
store_transition
([
1
]
*
n_features
,
1
,
1.0
)
#brain.build_net()
brain
.
learn
()
brain
=
PolicyGradient
(
n_actions
,
stage_len
)
e
=
Env
(
stage_len
,
interval
)
brain
.
build_net
()
done
=
False
for
epoch
in
range
(
epoches
):
if
epoch
%
100
==
1
:
e
.
render
=
True
else
:
e
.
render
=
False
e
.
reset
()
while
not
done
:
s
=
e
.
status
()
action
=
brain
.
choose_action
(
s
)
r
,
done
,
_
=
e
.
move
(
action
)
brain
.
store_transition
(
s
,
action
,
r
)
done
=
False
brain
.
learn
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录