未验证 提交 baea289d 编写于 作者: K Kaipeng Deng 提交者: GitHub

Merge pull request #2048 from tink2123/yolov3_readme

polish readme for yolov3
......@@ -9,7 +9,6 @@
- [Training](#training)
- [Evaluation](#evaluation)
- [Inference and Visualization](#inference-and-visualization)
- [Appendix](#appendix)
## Installation
......@@ -45,34 +44,35 @@ Train the model on [MS-COCO dataset](http://cocodataset.org/#download), download
cd dataset/coco
./download.sh
The data catalog structure is as follows:
```
dataset/coco/
├── annotations
│   ├── instances_train2014.json
│   ├── instances_train2017.json
│   ├── instances_val2014.json
│   ├── instances_val2017.json
| ...
├── train2017
│   ├── 000000000009.jpg
│   ├── 000000580008.jpg
| ...
├── val2017
│   ├── 000000000139.jpg
│   ├── 000000000285.jpg
| ...
```
## Training
After data preparation, one can start the training step by:
python train.py \
--model_save_dir=output/ \
--pretrain=${path_to_pretrain_model}
--data_dir=${path_to_data}
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- For more help on arguments:
python train.py --help
**download the pre-trained model:** This sample provides Resnet-50 pre-trained model which is converted from Caffe. The model fuses the parameters in batch normalization layer. One can download pre-trained model as:
sh ./weights/download.sh
Set `pretrain` to load pre-trained model. In addition, this parameter is used to load trained model when finetuning as well.
Please make sure that pre-trained model is downloaded and loaded correctly, otherwise, the loss may be NAN during training.
**Install the [cocoapi](https://github.com/cocodataset/cocoapi):**
To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed. Install the cocoapi:
git clone https://github.com/cocodataset/cocoapi.git
cd PythonAPI
cd cocoapi/PythonAPI
# if cython is not installed
pip install Cython
# Install into global site-packages
......@@ -81,6 +81,26 @@ To train the model, [cocoapi](https://github.com/cocodataset/cocoapi) is needed.
# not to install the COCO API into global site-packages
python2 setup.py install --user
**download the pre-trained model:** This sample provides Resnet-50 pre-trained model which is converted from Caffe. The model fuses the parameters in batch normalization layer. One can download pre-trained model as:
sh ./weights/download.sh
Set `pretrain` to load pre-trained model. In addition, this parameter is used to load trained model when finetuning as well.
Please make sure that pre-trained model is downloaded and loaded correctly, otherwise, the loss may be NAN during training.
**training:** After data preparation, one can start the training step by:
python train.py \
--model_save_dir=output/ \
--pretrain=${path_to_pretrain_model}
--data_dir=${path_to_data}
- Set ```export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7``` to specifiy 8 GPU to train.
- For more help on arguments:
python train.py --help
**data reader introduction:**
* Data reader is defined in `reader.py` .
......
......@@ -9,7 +9,6 @@
- [模型训练](#模型训练)
- [模型评估](#模型评估)
- [模型推断及可视化](#模型推断及可视化)
- [附录](#附录)
## 安装
......@@ -47,34 +46,35 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层
cd dataset/coco
./download.sh
数据目录结构如下:
```
dataset/coco/
├── annotations
│   ├── instances_train2014.json
│   ├── instances_train2017.json
│   ├── instances_val2014.json
│   ├── instances_val2017.json
| ...
├── train2017
│   ├── 000000000009.jpg
│   ├── 000000580008.jpg
| ...
├── val2017
│   ├── 000000000139.jpg
│   ├── 000000000285.jpg
| ...
```
## 模型训练
数据准备完毕后,可以通过如下的方式启动训练:
python train.py \
--model_save_dir=output/ \
--pretrain=${path_to_pretrain_model}
--data_dir=${path_to_data}
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:
python train.py --help
**下载预训练模型:** 本示例提供darknet53预训练模型,该模型转换自作者提供的darknet53在ImageNet上预训练的权重,采用如下命令下载预训练模型:
sh ./weights/download.sh
通过初始化`pretrain` 加载预训练模型。同时在参数微调时也采用该设置加载已训练模型。
请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。
**安装[cocoapi](https://github.com/cocodataset/cocoapi):**
训练前需要首先下载[cocoapi](https://github.com/cocodataset/cocoapi)
git clone https://github.com/cocodataset/cocoapi.git
cd PythonAPI
cd cocoapi/PythonAPI
# if cython is not installed
pip install Cython
# Install into global site-packages
......@@ -83,6 +83,25 @@ YOLOv3 的网络结构由基础特征提取网络、multi-scale特征融合层
# not to install the COCO API into global site-packages
python2 setup.py install --user
**下载预训练模型:** 本示例提供darknet53预训练模型,该模型转换自作者提供的darknet53在ImageNet上预训练的权重,采用如下命令下载预训练模型:
sh ./weights/download.sh
通过初始化`pretrain` 加载预训练模型。同时在参数微调时也采用该设置加载已训练模型。
请在训练前确认预训练模型下载与加载正确,否则训练过程中损失可能会出现NAN。
**开始训练:** 数据准备完毕后,可以通过如下的方式启动训练:
python train.py \
--model_save_dir=output/ \
--pretrain=${path_to_pretrain_model}
--data_dir=${path_to_data}
- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:
python train.py --help
**数据读取器说明:**
* 数据读取器定义在reader.py中。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册