Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b877a86f
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
b877a86f
编写于
4月 21, 2020
作者:
O
overlordmax
提交者:
GitHub
4月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Mmoe sb 04211336 (#4552)
* fix bugs * fix bugs
上级
3d37039c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
60 addition
and
56 deletion
+60
-56
PaddleRec/multi-task/MMoE/README.md
PaddleRec/multi-task/MMoE/README.md
+8
-8
PaddleRec/multi-task/MMoE/args.py
PaddleRec/multi-task/MMoE/args.py
+5
-6
PaddleRec/multi-task/MMoE/mmoe_train.py
PaddleRec/multi-task/MMoE/mmoe_train.py
+18
-15
PaddleRec/multi-task/Share_bottom/README.md
PaddleRec/multi-task/Share_bottom/README.md
+2
-2
PaddleRec/multi-task/Share_bottom/args.py
PaddleRec/multi-task/Share_bottom/args.py
+5
-5
PaddleRec/multi-task/Share_bottom/share_bottom.py
PaddleRec/multi-task/Share_bottom/share_bottom.py
+22
-18
PaddleRec/multi-task/Share_bottom/train_gpu.sh
PaddleRec/multi-task/Share_bottom/train_gpu.sh
+0
-2
未找到文件。
PaddleRec/multi-task/MMoE/README.md
浏览文件 @
b877a86f
...
...
@@ -121,19 +121,19 @@ python train_mmoe.py --use_gpu 0 \ #使用cpu训练
## 预测
本模型训练和预测交替进行,
运行train_mmoe.py 即
可得到预测结果
本模型训练和预测交替进行,
训练的同时
可得到预测结果
## 模型效果
epoch设置为100的训练和测试效果如下:
```
text
batch_size:[32],feature_size:[499],expert_num:[8],gate_num[2],expert_size[16],tower_size[8],epochs:[100]
2020-04-16 11:28:06,-
INFO -
epoch_id: 0,epoch_time: 129.17434 s,loss: 0.62215,train_auc_income: 0.86302,train_auc_marital: 0.92316,test_auc_income: 0.84525,test_auc_marital: 0.98269
2020-04-16 11:30:36,-
INFO -
epoch_id: 1,epoch_time: 149.79017 s,loss: 0.42484,train_auc_income: 0.90634,train_auc_marital: 0.98418,test_auc_income:
2020-04-21 12:39:08,-INFO: batch_size:32,feature_size:499,expert_num:8,gate_num:2,expert_size:16,tower_size:8,epochs:2
2020-04-16 11:28:06,-
INFO:
epoch_id: 0,epoch_time: 129.17434 s,loss: 0.62215,train_auc_income: 0.86302,train_auc_marital: 0.92316,test_auc_income: 0.84525,test_auc_marital: 0.98269
2020-04-16 11:30:36,-
INFO:
epoch_id: 1,epoch_time: 149.79017 s,loss: 0.42484,train_auc_income: 0.90634,train_auc_marital: 0.98418,test_auc_income:
......
2020-04-16 15:31:23,-
INFO -
epoch_id: 97,epoch_time: 147.07304 s,loss: 0.30267,train_auc_income: 0.94743,train_auc_marital: 0.99430,test_auc_income: 0.94905,test_auc_marital: 0.99414
2020-04-16 15:33:51,-
INFO -
epoch_id: 98,epoch_time: 148.34412 s,loss: 0.29688,train_auc_income: 0.94736,train_auc_marital: 0.99433,test_auc_income: 0.94846,test_auc_marital: 0.99409
2020-04-16 15:36:21,-
INFO -
epoch_id: 99,epoch_time: 149.91047 s,loss: 0.31330,train_auc_income: 0.94732,train_auc_marital: 0.99403,test_auc_income: 0.94881,test_auc_marital: 0.99386
2020-04-16 15:36:21,-
INFO -
mean_mmoe_test_auc_income: 0.94465,mean_mmoe_test_auc_marital 0.99324,max_mmoe_test_auc_income: 0.94937,max_mmoe_test_auc_marital 0.99419
2020-04-16 15:31:23,-
INFO:
epoch_id: 97,epoch_time: 147.07304 s,loss: 0.30267,train_auc_income: 0.94743,train_auc_marital: 0.99430,test_auc_income: 0.94905,test_auc_marital: 0.99414
2020-04-16 15:33:51,-
INFO:
epoch_id: 98,epoch_time: 148.34412 s,loss: 0.29688,train_auc_income: 0.94736,train_auc_marital: 0.99433,test_auc_income: 0.94846,test_auc_marital: 0.99409
2020-04-16 15:36:21,-
INFO:
epoch_id: 99,epoch_time: 149.91047 s,loss: 0.31330,train_auc_income: 0.94732,train_auc_marital: 0.99403,test_auc_income: 0.94881,test_auc_marital: 0.99386
2020-04-16 15:36:21,-
INFO:
mean_mmoe_test_auc_income: 0.94465,mean_mmoe_test_auc_marital 0.99324,max_mmoe_test_auc_income: 0.94937,max_mmoe_test_auc_marital 0.99419
```
PaddleRec/multi-task/MMoE/args.py
浏览文件 @
b877a86f
...
...
@@ -27,7 +27,7 @@ def parse_args():
parser
.
add_argument
(
"--tower_size"
,
type
=
int
,
default
=
8
,
help
=
"tower_size"
)
parser
.
add_argument
(
"--expert_num"
,
type
=
int
,
default
=
8
,
help
=
"expert_num"
)
parser
.
add_argument
(
"--gate_num"
,
type
=
int
,
default
=
2
,
help
=
"gate_num"
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
4
00
,
help
=
"epochs"
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
1
00
,
help
=
"epochs"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"batch_size"
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
int
,
default
=
0
,
help
=
'whether using gpu'
)
parser
.
add_argument
(
'--model_dir'
,
type
=
str
,
default
=
'model_dir'
,
help
=
"model_dir"
)
...
...
@@ -38,10 +38,9 @@ def parse_args():
def
data_preparation_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--train_path"
,
type
=
str
,
default
=
''
,
help
=
"train_path"
)
parser
.
add_argument
(
"--test_path"
,
type
=
str
,
default
=
''
,
help
=
"test_path"
)
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
''
,
help
=
"train_data_path"
)
parser
.
add_argument
(
'--test_data_path'
,
type
=
str
,
default
=
''
,
help
=
"test_data_path"
)
parser
.
add_argument
(
"--train_path"
,
type
=
str
,
default
=
'data/census-income.data'
,
help
=
"train_path"
)
parser
.
add_argument
(
"--test_path"
,
type
=
str
,
default
=
'data/census-income.test'
,
help
=
"test_path"
)
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
'train_data/'
,
help
=
"train_data_path"
)
parser
.
add_argument
(
'--test_data_path'
,
type
=
str
,
default
=
'test_data/'
,
help
=
"test_data_path"
)
args
=
parser
.
parse_args
()
return
args
PaddleRec/multi-task/MMoE/mmoe_train.py
浏览文件 @
b877a86f
...
...
@@ -7,6 +7,11 @@ import datetime
import
os
import
utils
from
args
import
*
import
logging
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
set_zero
(
var_name
,
scope
=
fluid
.
global_scope
(),
place
=
fluid
.
CPUPlace
(),
param_type
=
"int64"
):
"""
...
...
@@ -62,16 +67,16 @@ def MMOE(feature_size=499,expert_num=8, gate_num=2, expert_size=16, tower_size=8
output_layers
.
append
(
out
)
cost_income
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
output_layers
[
0
],
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
output_layers
[
1
],
label
=
label_marital
,
soft_label
=
True
)
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
cost_income
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-10
,
max
=
1.0
-
1e-10
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-10
,
max
=
1.0
-
1e-10
)
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
...
...
@@ -95,8 +100,8 @@ expert_num = args.expert_num
epochs
=
args
.
epochs
gate_num
=
args
.
gate_num
print
(
"batch_size:[%d],feature_size:[%d],expert_num:[%d],gate_num[%d],expert_size[%d],tower_size[%d],epochs:[%d]"
%
(
batch_size
,
feature_size
,
expert_num
,
gate_num
,
expert_size
,
tower_size
,
epochs
))
logger
.
info
(
"batch_size:{} ,feature_size:{} ,expert_num:{} ,gate_num:{} ,expert_size:{} ,tower_size:{} ,epochs:{} "
.
format
(
batch_size
,
feature_size
,
expert_num
,
gate_num
,
expert_size
,
tower_size
,
epochs
))
train_reader
=
utils
.
prepare_reader
(
train_path
,
batch_size
)
test_reader
=
utils
.
prepare_reader
(
test_path
,
batch_size
)
...
...
@@ -156,14 +161,12 @@ for epoch in range(epochs):
auc_income_list
.
append
(
test_auc_1_p
)
auc_marital_list
.
append
(
test_auc_2_p
)
end
=
time
.
time
()
time_stamp
=
datetime
.
datetime
.
now
()
print
(
"%s,- INFO - epoch_id: %d,epoch_time: %.5f s,loss: %.5f,train_auc_income: %.5f,train_auc_marital: %.5f,test_auc_income: %.5f,test_auc_marital: %.5f"
%
(
time_stamp
.
strftime
(
'%Y-%m-%d %H:%M:%S'
),
epoch
,
end
-
begin
,
loss_data
,
auc_1_p
,
auc_2_p
,
test_auc_1_p
,
test_auc_2_p
))
time_stamp
=
datetime
.
datetime
.
now
()
print
(
"%s,- INFO - mean_mmoe_test_auc_income: %.5f,mean_mmoe_test_auc_marital %.5f,max_mmoe_test_auc_income: %.5f,max_mmoe_test_auc_marital %.5f"
%
(
time_stamp
.
strftime
(
'%Y-%m-%d %H:%M:%S'
),
np
.
mean
(
auc_income_list
),
np
.
mean
(
auc_marital_list
),
np
.
max
(
auc_income_list
),
np
.
max
(
auc_marital_list
)))
logger
.
info
(
"epoch_id:{},epoch_time:{} s,loss:{},train_auc_income:{},train_auc_marital:{},test_auc_income:{},test_auc_marital:{}"
.
format
(
epoch
,
end
-
begin
,
loss_data
,
auc_1_p
,
auc_2_p
,
test_auc_1_p
,
test_auc_2_p
))
logger
.
info
(
"mean_sb_test_auc_income:{},mean_sb_test_auc_marital:{},max_sb_test_auc_income:{},max_sb_test_auc_marital:{}"
.
format
(
np
.
mean
(
auc_income_list
),
np
.
mean
(
auc_marital_list
),
np
.
max
(
auc_income_list
),
np
.
max
(
auc_marital_list
)))
...
...
PaddleRec/multi-task/Share_bottom/README.md
浏览文件 @
b877a86f
...
...
@@ -119,14 +119,14 @@ python share_bottom.py --use_gpu 0\ #使用cpu训练
## 预测
本模型训练和预测交替进行,
运行share_bottom.py即可得到预测结果
本模型训练和预测交替进行,
训练的同时可得到预测结果。
## 模型效果
epoch设置为100的训练和测试效果如下:
```
text
batch_size:[32],epochs:[100],feature_size:[499],bottom_size:[117],tower_nums:[2],tower_size:[8]
2020-04-16 16:01:04,-INFO:
batch_size:[32],epochs:[100],feature_size:[499],bottom_size:[117],tower_nums:[2],tower_size:[8]
2020-04-16 16:01:04,- INFO - epoch_id: 0,epoch_time: 77.17624 s,loss: 0.62643,train_auc_income: 0.49442,train_auc_marital: 0.93509,test_auc_income: 0.50000,test_auc_marital: 0.93920
2020-04-16 16:02:23,- INFO - epoch_id: 1,epoch_time: 78.84795 s,loss: 0.47955,train_auc_income: 0.49721,train_auc_marital: 0.98118,test_auc_income: 0.50000,test_auc_marital: 0.98804
2020-04-16 16:03:43,- INFO - epoch_id: 2,epoch_time: 79.67485 s,loss:
...
...
PaddleRec/multi-task/Share_bottom/args.py
浏览文件 @
b877a86f
...
...
@@ -26,7 +26,7 @@ def parse_args():
parser
.
add_argument
(
"--bottom_size"
,
type
=
int
,
default
=
117
,
help
=
"bottom_size"
)
parser
.
add_argument
(
"--tower_nums"
,
type
=
int
,
default
=
2
,
help
=
"tower_nums"
)
parser
.
add_argument
(
"--tower_size"
,
type
=
int
,
default
=
8
,
help
=
"tower_size"
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
4
00
,
help
=
"epochs"
)
parser
.
add_argument
(
"--epochs"
,
type
=
int
,
default
=
1
00
,
help
=
"epochs"
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
32
,
help
=
"batch_size"
)
parser
.
add_argument
(
'--use_gpu'
,
type
=
int
,
default
=
0
,
help
=
'whether using gpu'
)
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
'train_data'
,
help
=
"train_data_path"
)
...
...
@@ -38,9 +38,9 @@ def parse_args():
def
data_preparation_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--train_path"
,
type
=
str
,
default
=
''
,
help
=
"train_path"
)
parser
.
add_argument
(
"--test_path"
,
type
=
str
,
default
=
''
,
help
=
"test_path"
)
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
'train_data'
,
help
=
"train_data_path"
)
parser
.
add_argument
(
'--test_data_path'
,
type
=
str
,
default
=
'test_data'
,
help
=
"test_data_path"
)
parser
.
add_argument
(
"--train_path"
,
type
=
str
,
default
=
'
data/census-income.data
'
,
help
=
"train_path"
)
parser
.
add_argument
(
"--test_path"
,
type
=
str
,
default
=
'
data/census-income.test
'
,
help
=
"test_path"
)
parser
.
add_argument
(
'--train_data_path'
,
type
=
str
,
default
=
'train_data
/
'
,
help
=
"train_data_path"
)
parser
.
add_argument
(
'--test_data_path'
,
type
=
str
,
default
=
'test_data
/
'
,
help
=
"test_data_path"
)
args
=
parser
.
parse_args
()
return
args
PaddleRec/multi-task/Share_bottom/share_bottom.py
浏览文件 @
b877a86f
...
...
@@ -5,8 +5,13 @@ import os
import
time
import
datetime
import
utils
import
logging
from
args
import
*
logging
.
basicConfig
(
format
=
'%(asctime)s - %(levelname)s - %(message)s'
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
def
set_zero
(
var_name
,
scope
=
fluid
.
global_scope
(),
place
=
fluid
.
CPUPlace
(),
param_type
=
"int64"
):
"""
Set tensor of a Variable to zero.
...
...
@@ -49,25 +54,25 @@ def share_bottom(feature_size=499,bottom_size=117,tower_nums=2,tower_size=8):
name
=
'output_layer_'
+
str
(
index
))
output_layers
.
append
(
output_layer
)
cost_income
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
output_layers
[
0
],
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
output_layers
[
1
],
label
=
label_marital
,
soft_label
=
True
)
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
cost_income
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
paddle
.
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-10
,
max
=
1.0
-
1e-10
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-10
,
max
=
1.0
-
1e-10
)
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
cost
=
fluid
.
layers
.
elementwise_add
(
cost_income
,
cost_marital
,
axis
=
1
)
avg_cost_income
=
fluid
.
layers
.
mean
(
x
=
cost_income
)
avg_cost_marital
=
fluid
.
layers
.
mean
(
x
=
cost_marital
)
cost
=
avg_cost_income
+
avg_cost_marital
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
[
a_data
,
label_income
,
label_marital
],
cost
,
output_layers
[
0
],
output_layers
[
1
],
label_income
,
label_marital
,
auc_income
,
auc_marital
,
auc_states_1
,
auc_states_2
return
[
a_data
,
label_income
,
label_marital
],
avg_
cost
,
output_layers
[
0
],
output_layers
[
1
],
label_income
,
label_marital
,
auc_income
,
auc_marital
,
auc_states_1
,
auc_states_2
...
...
@@ -81,7 +86,8 @@ tower_nums = args.tower_nums
tower_size
=
args
.
tower_size
epochs
=
args
.
epochs
print
(
"batch_size:[%d],epochs:[%d],feature_size:[%d],bottom_size:[%d],tower_nums:[%d],tower_size:[%d]"
%
(
batch_size
,
epochs
,
feature_size
,
bottom_size
,
tower_nums
,
tower_size
))
logger
.
info
(
"batch_size:{} ,epochs:{} ,feature_size:{} ,bottom_size:{} ,tower_nums:{} ,tower_size:{} "
.
format
(
batch_size
,
epochs
,
feature_size
,
bottom_size
,
tower_nums
,
tower_size
))
train_reader
=
utils
.
prepare_reader
(
train_path
,
batch_size
)
test_reader
=
utils
.
prepare_reader
(
test_path
,
batch_size
)
...
...
@@ -142,14 +148,12 @@ for epoch in range(epochs):
auc_income_list
.
append
(
test_auc_1_p
)
auc_marital_list
.
append
(
test_auc_2_p
)
end
=
time
.
time
()
time_stamp
=
datetime
.
datetime
.
now
()
print
(
"%s,- INFO - epoch_id: %d,epoch_time: %.5f s,loss: %.5f,train_auc_income: %.5f,train_auc_marital: %.5f,test_auc_income: %.5f,test_auc_marital: %.5f"
%
(
time_stamp
.
strftime
(
'%Y-%m-%d %H:%M:%S'
),
epoch
,
end
-
begin
,
loss_data
,
auc_1_p
,
auc_2_p
,
test_auc_1_p
,
test_auc_2_p
))
time_stamp
=
datetime
.
datetime
.
now
()
print
(
"%s,- INFO - mean_sb_test_auc_income: %.5f,mean_sb_test_auc_marital %.5f,max_sb_test_auc_income: %.5f,max_sb_test_auc_marital %.5f"
%
(
time_stamp
.
strftime
(
'%Y-%m-%d %H:%M:%S'
),
np
.
mean
(
auc_income_list
),
np
.
mean
(
auc_marital_list
),
np
.
max
(
auc_income_list
),
np
.
max
(
auc_marital_list
)))
logger
.
info
(
"epoch_id:{},epoch_time:{} s,loss:{},train_auc_income:{},train_auc_marital:{},test_auc_income:{},test_auc_marital:{}"
.
format
(
epoch
,
end
-
begin
,
loss_data
,
auc_1_p
,
auc_2_p
,
test_auc_1_p
,
test_auc_2_p
))
logger
.
info
(
"mean_sb_test_auc_income:{},mean_sb_test_auc_marital:{},max_sb_test_auc_income:{},max_sb_test_auc_marital:{}"
.
format
(
np
.
mean
(
auc_income_list
),
np
.
mean
(
auc_marital_list
),
np
.
max
(
auc_income_list
),
np
.
max
(
auc_marital_list
)))
...
...
PaddleRec/multi-task/Share_bottom/train_gpu.sh
浏览文件 @
b877a86f
...
...
@@ -2,8 +2,6 @@ CUDA_VISIBLE_DEVICES=0 python share_bottom.py --use_gpu 1 \
--epochs
100
\
--train_data_path
'train_data'
\
--test_data_path
'test_data'
\
--train_data_path
'.train_data'
\
--test_data_path
'.test_data'
\
--model_dir
'model_dir'
\
--batch_size
32
\
--feature_size
499
\
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录