Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b8096cc3
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b8096cc3
编写于
9月 19, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add tuning script & enable ploting error surface
上级
793d61ad
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
121 addition
and
48 deletion
+121
-48
deep_speech_2/examples/librispeech/run_tune.sh
deep_speech_2/examples/librispeech/run_tune.sh
+12
-10
deep_speech_2/tools/tune.py
deep_speech_2/tools/tune.py
+109
-38
未找到文件。
deep_speech_2/examples/librispeech/run_tune.sh
浏览文件 @
b8096cc3
...
...
@@ -5,27 +5,29 @@ pushd ../.. > /dev/null
# grid-search for hyper-parameters in language model
CUDA_VISIBLE_DEVICES
=
0,1,2,3,4,5,6,7
\
python
-u
tools/tune.py
\
--num_samples
=
100
\
--num_batches
=
2
\
--batch_size
=
24
\
--trainer_count
=
8
\
--beam_size
=
500
\
--num_proc_bsearch
=
12
\
--num_conv_layers
=
2
\
--num_rnn_layers
=
3
\
--rnn_layer_size
=
2048
\
--num_alphas
=
14
\
--num_betas
=
20
\
--alpha_from
=
0.1
\
--alpha_to
=
0.36
\
--beta_from
=
0.05
\
--beta_to
=
1.0
\
--cutoff_prob
=
0.99
\
--num_alphas
=
2
\
--num_betas
=
2
\
--alpha_from
=
1.0
\
--alpha_to
=
3.2
\
--beta_from
=
0.1
\
--beta_to
=
0.45
\
--cutoff_prob
=
1.0
\
--cutoff_top_n
=
40
\
--use_gru
=
False
\
--use_gpu
=
True
\
--share_rnn_weights
=
True
\
--tune_manifest
=
'data/librispeech/manifest.dev-clean'
\
--mean_std_path
=
'data/librispeech/mean_std.npz'
\
--vocab_path
=
'
data
/librispeech/vocab.txt'
\
--model_path
=
'
checkpoints/libri/params.latest
.tar.gz'
\
--vocab_path
=
'
models
/librispeech/vocab.txt'
\
--model_path
=
'
models/librispeech/params
.tar.gz'
\
--lang_model_path
=
'models/lm/common_crawl_00.prune01111.trie.klm'
\
--error_rate_type
=
'wer'
\
--specgram_type
=
'linear'
...
...
deep_speech_2/tools/tune.py
浏览文件 @
b8096cc3
...
...
@@ -3,6 +3,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
sys
import
numpy
as
np
import
argparse
import
functools
...
...
@@ -16,26 +17,30 @@ from utils.utility import add_arguments, print_arguments
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'num_samples'
,
int
,
100
,
"# of samples to infer."
)
add_arg
(
'trainer_count'
,
int
,
8
,
"# of Trainers (CPUs or GPUs)."
)
add_arg
(
'beam_size'
,
int
,
500
,
"Beam search width."
)
add_arg
(
'num_proc_bsearch'
,
int
,
12
,
"# of CPUs for beam search."
)
add_arg
(
'num_conv_layers'
,
int
,
2
,
"# of convolution layers."
)
add_arg
(
'num_rnn_layers'
,
int
,
3
,
"# of recurrent layers."
)
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'num_alphas'
,
int
,
14
,
"# of alpha candidates for tuning."
)
add_arg
(
'num_betas'
,
int
,
20
,
"# of beta candidates for tuning."
)
add_arg
(
'alpha_from'
,
float
,
0.1
,
"Where alpha starts tuning from."
)
add_arg
(
'alpha_to'
,
float
,
0.36
,
"Where alpha ends tuning with."
)
add_arg
(
'beta_from'
,
float
,
0.05
,
"Where beta starts tuning from."
)
add_arg
(
'beta_to'
,
float
,
1.0
,
"Where beta ends tuning with."
)
add_arg
(
'cutoff_prob'
,
float
,
0.99
,
"Cutoff probability for pruning."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
"bi-directional RNNs. Not for GRU."
)
add_arg
(
'num_batches'
,
int
,
-
1
,
"# of batches tuning on. "
"Default -1, on whole dev set."
)
add_arg
(
'batch_size'
,
int
,
256
,
"# of samples per batch."
)
add_arg
(
'trainer_count'
,
int
,
8
,
"# of Trainers (CPUs or GPUs)."
)
add_arg
(
'beam_size'
,
int
,
500
,
"Beam search width."
)
add_arg
(
'num_proc_bsearch'
,
int
,
12
,
"# of CPUs for beam search."
)
add_arg
(
'num_conv_layers'
,
int
,
2
,
"# of convolution layers."
)
add_arg
(
'num_rnn_layers'
,
int
,
3
,
"# of recurrent layers."
)
add_arg
(
'rnn_layer_size'
,
int
,
2048
,
"# of recurrent cells per layer."
)
add_arg
(
'num_alphas'
,
int
,
45
,
"# of alpha candidates for tuning."
)
add_arg
(
'num_betas'
,
int
,
8
,
"# of beta candidates for tuning."
)
add_arg
(
'alpha_from'
,
float
,
1.0
,
"Where alpha starts tuning from."
)
add_arg
(
'alpha_to'
,
float
,
3.2
,
"Where alpha ends tuning with."
)
add_arg
(
'beta_from'
,
float
,
0.1
,
"Where beta starts tuning from."
)
add_arg
(
'beta_to'
,
float
,
0.45
,
"Where beta ends tuning with."
)
add_arg
(
'cutoff_prob'
,
float
,
1.0
,
"Cutoff probability for pruning."
)
add_arg
(
'cutoff_top_n'
,
int
,
40
,
"Cutoff number for pruning."
)
add_arg
(
'output_fig'
,
bool
,
True
,
"Output error rate figure or not."
)
add_arg
(
'use_gru'
,
bool
,
False
,
"Use GRUs instead of simple RNNs."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Use GPU or not."
)
add_arg
(
'share_rnn_weights'
,
bool
,
True
,
"Share input-hidden weights across "
"bi-directional RNNs. Not for GRU."
)
add_arg
(
'tune_manifest'
,
str
,
'data/librispeech/manifest.dev'
,
'data/librispeech/manifest.dev
-clean
'
,
"Filepath of manifest to tune."
)
add_arg
(
'mean_std_path'
,
str
,
'data/librispeech/mean_std.npz'
,
...
...
@@ -61,6 +66,23 @@ add_arg('specgram_type', str,
# yapf: disable
args
=
parser
.
parse_args
()
def
plot_error_surface
(
params_grid
,
err_ave
,
fig_name
):
import
matplotlib.pyplot
as
plt
import
mpl_toolkits.mplot3d
as
Axes3D
fig
=
plt
.
figure
()
ax
=
Axes3D
(
fig
)
alphas
=
[
param
[
0
]
for
param
in
params_grid
]
betas
=
[
param
[
1
]
for
param
in
params_grid
]
ALPHAS
=
np
.
reshape
(
alphas
,
(
args
.
num_alphas
,
args
.
num_betas
))
BETAS
=
np
.
reshape
(
betas
,
(
args
.
num_alphas
,
args
.
num_betas
))
ERR_AVE
=
np
.
reshape
(
err_ave
,
(
args
.
num_alphas
,
args
.
num_betas
))
ax
.
plot_surface
(
ALPHAS
,
BETAS
,
WERS
,
rstride
=
1
,
cstride
=
1
,
alpha
=
0.8
,
cmap
=
'rainbow'
)
ax
.
set_xlabel
(
'alpha'
)
ax
.
set_ylabel
(
'beta'
)
z_label
=
'WER'
if
args
.
error_rate_type
==
'wer'
else
'CER'
ax
.
set_zlabel
(
z_label
)
plt
.
savefig
(
fig_name
)
def
tune
():
"""Tune parameters alpha and beta on one minibatch."""
...
...
@@ -77,7 +99,7 @@ def tune():
num_threads
=
1
)
batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
tune_manifest
,
batch_size
=
args
.
num_samples
,
batch_size
=
args
.
batch_size
,
sortagrad
=
False
,
shuffle_method
=
None
)
tune_data
=
batch_reader
().
next
()
...
...
@@ -95,31 +117,80 @@ def tune():
pretrained_model_path
=
args
.
model_path
,
share_rnn_weights
=
args
.
share_rnn_weights
)
# decoders only accept string encoded in utf-8
vocab_list
=
[
chars
.
encode
(
"utf-8"
)
for
chars
in
data_generator
.
vocab_list
]
error_rate_func
=
cer
if
args
.
error_rate_type
==
'cer'
else
wer
# create grid for search
cand_alphas
=
np
.
linspace
(
args
.
alpha_from
,
args
.
alpha_to
,
args
.
num_alphas
)
cand_betas
=
np
.
linspace
(
args
.
beta_from
,
args
.
beta_to
,
args
.
num_betas
)
params_grid
=
[(
alpha
,
beta
)
for
alpha
in
cand_alphas
for
beta
in
cand_betas
]
## tune parameters in loop
for
alpha
,
beta
in
params_grid
:
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
tune_data
,
decoding_method
=
'ctc_beam_search'
,
beam_alpha
=
alpha
,
beam_beta
=
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
vocab_list
=
data_generator
.
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
wer_sum
,
num_ins
=
0.0
,
0
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
wer_sum
+=
wer
(
target
,
result
)
num_ins
+=
1
print
(
"alpha = %f
\t
beta = %f
\t
WER = %f"
%
(
alpha
,
beta
,
wer_sum
/
num_ins
))
err_sum
=
[
0.0
for
i
in
xrange
(
len
(
params_grid
))]
err_ave
=
[
0.0
for
i
in
xrange
(
len
(
params_grid
))]
num_ins
,
cur_batch
=
0
,
0
## incremental tuning parameters over multiple batches
for
infer_data
in
batch_reader
():
if
(
args
.
num_batches
>=
0
)
and
(
cur_batch
>=
args
.
num_batches
):
break
target_transcripts
=
[
''
.
join
([
data_generator
.
vocab_list
[
token
]
for
token
in
transcript
])
for
_
,
transcript
in
infer_data
]
num_ins
+=
len
(
target_transcripts
)
# grid search
for
index
,
(
alpha
,
beta
)
in
enumerate
(
params_grid
):
result_transcripts
=
ds2_model
.
infer_batch
(
infer_data
=
infer_data
,
decoding_method
=
'ctc_beam_search'
,
beam_alpha
=
alpha
,
beam_beta
=
beta
,
beam_size
=
args
.
beam_size
,
cutoff_prob
=
args
.
cutoff_prob
,
cutoff_top_n
=
args
.
cutoff_top_n
,
vocab_list
=
vocab_list
,
language_model_path
=
args
.
lang_model_path
,
num_processes
=
args
.
num_proc_bsearch
)
for
target
,
result
in
zip
(
target_transcripts
,
result_transcripts
):
err_sum
[
index
]
+=
error_rate_func
(
target
,
result
)
err_ave
[
index
]
=
err_sum
[
index
]
/
num_ins
# print("alpha = %f, beta = %f, WER = %f" %
# (alpha, beta, err_ave[index]))
if
index
%
10
==
0
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
# output on-line tuning result at the the end of current batch
err_ave_min
=
min
(
err_ave
)
min_index
=
err_ave
.
index
(
err_ave_min
)
print
(
"
\n
Batch %d, opt.(alpha, beta) = (%f, %f), min. error_rate = %f"
%
(
cur_batch
,
params_grid
[
min_index
][
0
],
params_grid
[
min_index
][
1
],
err_ave_min
))
cur_batch
+=
1
# output WER/CER at every point
print
(
"
\n
error rate at each point:
\n
"
)
for
index
in
xrange
(
len
(
params_grid
)):
print
(
"(%f, %f), error_rate = %f"
%
(
params_grid
[
index
][
0
],
params_grid
[
index
][
1
],
err_ave
[
index
]))
err_ave_min
=
min
(
err_ave
)
min_index
=
err_ave
.
index
(
err_ave_min
)
print
(
"
\n
Tuning on %d batches, opt. (alpha, beta) = (%f, %f)"
%
(
args
.
num_batches
,
params_grid
[
min_index
][
0
],
params_grid
[
min_index
][
1
]))
if
args
.
output_fig
==
True
:
fig_name
=
(
"error_surface_alphas_%d_betas_%d"
%
(
args
.
num_alphas
,
args
.
num_betas
))
plot_error_surface
(
params_grid
,
err_ave
,
fig_name
)
ds2_model
.
logger
.
info
(
"output figure %s"
%
fig_name
)
ds2_model
.
logger
.
info
(
"finish inference"
)
def
main
():
print_arguments
(
args
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录