Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
b5c4d832
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b5c4d832
编写于
8月 30, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add min cutoff & top n cutoff
上级
09f4c6e1
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
75 addition
and
36 deletion
+75
-36
deep_speech_2/deploy.py
deep_speech_2/deploy.py
+11
-3
deep_speech_2/deploy/ctc_decoders.cpp
deep_speech_2/deploy/ctc_decoders.cpp
+45
-26
deep_speech_2/deploy/ctc_decoders.h
deep_speech_2/deploy/ctc_decoders.h
+2
-0
deep_speech_2/deploy/scorer.h
deep_speech_2/deploy/scorer.h
+1
-1
deep_speech_2/deploy/swig_decoders_wrapper.py
deep_speech_2/deploy/swig_decoders_wrapper.py
+16
-6
未找到文件。
deep_speech_2/deploy.py
浏览文件 @
b5c4d832
...
...
@@ -18,7 +18,7 @@ import time
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--num_samples"
,
default
=
4
,
default
=
10
,
type
=
int
,
help
=
"Number of samples for inference. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -95,12 +95,12 @@ parser.add_argument(
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha"
,
default
=
0.26
,
default
=
1.5
,
type
=
float
,
help
=
"Parameter associated with language model. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta"
,
default
=
0.
1
,
default
=
0.
3
,
type
=
float
,
help
=
"Parameter associated with word count. (default: %(default)f)"
)
parser
.
add_argument
(
...
...
@@ -109,6 +109,12 @@ parser.add_argument(
type
=
float
,
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_top_n"
,
default
=
40
,
type
=
int
,
help
=
"The cutoff number of pruning"
"in beam search. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
...
...
@@ -184,6 +190,7 @@ def infer():
vocabulary
=
data_generator
.
vocab_list
,
blank_id
=
len
(
data_generator
.
vocab_list
),
cutoff_prob
=
args
.
cutoff_prob
,
cutoff_top_n
=
args
.
cutoff_top_n
,
ext_scoring_func
=
ext_scorer
,
)
batch_beam_results
+=
[
beam_result
]
else
:
...
...
@@ -194,6 +201,7 @@ def infer():
blank_id
=
len
(
data_generator
.
vocab_list
),
num_processes
=
args
.
num_processes_beam_search
,
cutoff_prob
=
args
.
cutoff_prob
,
cutoff_top_n
=
args
.
cutoff_top_n
,
ext_scoring_func
=
ext_scorer
,
)
for
i
,
beam_result
in
enumerate
(
batch_beam_results
):
...
...
deep_speech_2/deploy/ctc_decoders.cpp
浏览文件 @
b5c4d832
...
...
@@ -62,6 +62,7 @@ std::vector<std::pair<double, std::string> >
std
::
vector
<
std
::
string
>
vocabulary
,
int
blank_id
,
double
cutoff_prob
,
int
cutoff_top_n
,
Scorer
*
ext_scorer
)
{
// dimension check
...
...
@@ -116,19 +117,33 @@ std::vector<std::pair<double, std::string> >
prob_idx
.
push_back
(
std
::
pair
<
int
,
double
>
(
i
,
prob
[
i
]));
}
float
min_cutoff
=
-
NUM_FLT_INF
;
bool
full_beam
=
false
;
if
(
ext_scorer
!=
nullptr
)
{
int
num_prefixes
=
std
::
min
((
int
)
prefixes
.
size
(),
beam_size
);
std
::
sort
(
prefixes
.
begin
(),
prefixes
.
begin
()
+
num_prefixes
,
prefix_compare
);
min_cutoff
=
prefixes
[
num_prefixes
-
1
]
->
_score
+
log
(
prob
[
blank_id
])
-
std
::
max
(
0.0
,
ext_scorer
->
beta
);
full_beam
=
(
num_prefixes
==
beam_size
);
}
// pruning of vacobulary
int
cutoff_len
=
prob
.
size
();
if
(
cutoff_prob
<
1.0
)
{
if
(
cutoff_prob
<
1.0
||
cutoff_top_n
<
prob
.
size
()
)
{
std
::
sort
(
prob_idx
.
begin
(),
prob_idx
.
end
(),
pair_comp_second_rev
<
int
,
double
>
);
double
cum_prob
=
0.0
;
cutoff_len
=
0
;
for
(
int
i
=
0
;
i
<
prob_idx
.
size
();
i
++
)
{
cum_prob
+=
prob_idx
[
i
].
second
;
cutoff_len
+=
1
;
if
(
cum_prob
>=
cutoff_prob
)
break
;
if
(
cutoff_prob
<
1.0
)
{
double
cum_prob
=
0.0
;
cutoff_len
=
0
;
for
(
int
i
=
0
;
i
<
prob_idx
.
size
();
i
++
)
{
cum_prob
+=
prob_idx
[
i
].
second
;
cutoff_len
+=
1
;
if
(
cum_prob
>=
cutoff_prob
)
break
;
}
}
cutoff_len
=
std
::
min
(
cutoff_len
,
cutoff_top_n
);
prob_idx
=
std
::
vector
<
std
::
pair
<
int
,
double
>
>
(
prob_idx
.
begin
(),
prob_idx
.
begin
()
+
cutoff_len
);
}
...
...
@@ -138,15 +153,17 @@ std::vector<std::pair<double, std::string> >
log_prob_idx
.
push_back
(
std
::
pair
<
int
,
float
>
(
prob_idx
[
i
].
first
,
log
(
prob_idx
[
i
].
second
+
NUM_FLT_MIN
)));
}
// loop over chars
for
(
int
index
=
0
;
index
<
log_prob_idx
.
size
();
index
++
)
{
auto
c
=
log_prob_idx
[
index
].
first
;
float
log_prob_c
=
log_prob_idx
[
index
].
second
;
//float log_probs_prev;
for
(
int
i
=
0
;
i
<
prefixes
.
size
()
&&
i
<
beam_size
;
i
++
)
{
auto
prefix
=
prefixes
[
i
];
if
(
full_beam
&&
log_prob_c
+
prefix
->
_score
<
min_cutoff
)
{
break
;
}
// blank
if
(
c
==
blank_id
)
{
prefix
->
_log_prob_b_cur
=
log_sum_exp
(
...
...
@@ -178,7 +195,7 @@ std::vector<std::pair<double, std::string> >
(
c
==
space_id
||
ext_scorer
->
is_character_based
())
)
{
PathTrie
*
prefix_to_score
=
nullptr
;
//
don't score
the space
//
skip scoring
the space
if
(
ext_scorer
->
is_character_based
())
{
prefix_to_score
=
prefix_new
;
}
else
{
...
...
@@ -202,10 +219,10 @@ std::vector<std::pair<double, std::string> >
}
// end of loop over chars
prefixes
.
clear
();
// update log prob
abilitie
s
// update log probs
root
.
iterate_to_vec
(
prefixes
);
//
sort prefixes by score
//
preserve top beam_size prefixes
if
(
prefixes
.
size
()
>=
beam_size
)
{
std
::
nth_element
(
prefixes
.
begin
(),
prefixes
.
begin
()
+
beam_size
,
...
...
@@ -218,18 +235,20 @@ std::vector<std::pair<double, std::string> >
}
}
// compute aproximate ctc score as the return score
for
(
size_t
i
=
0
;
i
<
beam_size
&&
i
<
prefixes
.
size
();
i
++
)
{
double
approx_ctc
=
prefixes
[
i
]
->
_score
;
// remove word insert:
std
::
vector
<
int
>
output
;
prefixes
[
i
]
->
get_path_vec
(
output
);
size_t
prefix_length
=
output
.
size
();
// remove language model weight:
if
(
ext_scorer
!=
nullptr
)
{
// auto words = split_labels(output);
// approx_ctc = approx_ctc - path_length * ext_scorer->beta;
// approx_ctc -= (_lm->get_sent_log_prob(words)) * ext_scorer->alpha;
std
::
vector
<
int
>
output
;
prefixes
[
i
]
->
get_path_vec
(
output
);
size_t
prefix_length
=
output
.
size
();
auto
words
=
ext_scorer
->
split_labels
(
output
);
// remove word insert
approx_ctc
=
approx_ctc
-
prefix_length
*
ext_scorer
->
beta
;
// remove language model weight:
approx_ctc
-=
(
ext_scorer
->
get_sent_log_prob
(
words
))
*
ext_scorer
->
alpha
;
}
prefixes
[
i
]
->
_approx_ctc
=
approx_ctc
;
...
...
@@ -253,11 +272,9 @@ std::vector<std::pair<double, std::string> >
for
(
int
j
=
0
;
j
<
output
.
size
();
j
++
)
{
output_str
+=
vocabulary
[
output
[
j
]];
}
std
::
pair
<
double
,
std
::
string
>
output_pair
(
space_prefixes
[
i
]
->
_score
,
output_str
);
output_vecs
.
emplace_back
(
output_pair
);
std
::
pair
<
double
,
std
::
string
>
output_pair
(
-
space_prefixes
[
i
]
->
_approx_ctc
,
output_str
);
output_vecs
.
emplace_back
(
output_pair
);
}
return
output_vecs
;
...
...
@@ -272,6 +289,7 @@ std::vector<std::vector<std::pair<double, std::string> > >
int
blank_id
,
int
num_processes
,
double
cutoff_prob
,
int
cutoff_top_n
,
Scorer
*
ext_scorer
)
{
if
(
num_processes
<=
0
)
{
...
...
@@ -295,7 +313,8 @@ std::vector<std::vector<std::pair<double, std::string> > >
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
res
.
emplace_back
(
pool
.
enqueue
(
ctc_beam_search_decoder
,
probs_split
[
i
],
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
ext_scorer
)
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
cutoff_top_n
,
ext_scorer
)
);
}
// get decoding results
...
...
deep_speech_2/deploy/ctc_decoders.h
浏览文件 @
b5c4d832
...
...
@@ -39,6 +39,7 @@ std::vector<std::pair<double, std::string> >
std
::
vector
<
std
::
string
>
vocabulary
,
int
blank_id
,
double
cutoff_prob
=
1
.
0
,
int
cutoff_top_n
=
40
,
Scorer
*
ext_scorer
=
NULL
);
...
...
@@ -66,6 +67,7 @@ std::vector<std::vector<std::pair<double, std::string>>>
int
blank_id
,
int
num_processes
,
double
cutoff_prob
=
1
.
0
,
int
cutoff_top_n
=
40
,
Scorer
*
ext_scorer
=
NULL
);
...
...
deep_speech_2/deploy/scorer.h
浏览文件 @
b5c4d832
...
...
@@ -50,6 +50,7 @@ public:
void
fill_dictionary
(
bool
add_space
);
// set char map
void
set_char_map
(
std
::
vector
<
std
::
string
>
char_list
);
std
::
vector
<
std
::
string
>
split_labels
(
const
std
::
vector
<
int
>
&
labels
);
// expose to decoder
double
alpha
;
double
beta
;
...
...
@@ -60,7 +61,6 @@ protected:
void
load_LM
(
const
char
*
filename
);
double
get_log_prob
(
const
std
::
vector
<
std
::
string
>&
words
);
std
::
string
vec2str
(
const
std
::
vector
<
int
>
&
input
);
std
::
vector
<
std
::
string
>
split_labels
(
const
std
::
vector
<
int
>
&
labels
);
private:
void
*
_language_model
;
...
...
deep_speech_2/deploy/swig_decoders_wrapper.py
浏览文件 @
b5c4d832
...
...
@@ -43,6 +43,7 @@ def ctc_beam_search_decoder(probs_seq,
vocabulary
,
blank_id
,
cutoff_prob
=
1.0
,
cutoff_top_n
=
40
,
ext_scoring_func
=
None
):
"""Wrapper for the CTC Beam Search Decoder.
...
...
@@ -59,6 +60,10 @@ def ctc_beam_search_decoder(probs_seq,
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
...
...
@@ -67,9 +72,9 @@ def ctc_beam_search_decoder(probs_seq,
results, in descending order of the probability.
:rtype: list
"""
return
swig_decoders
.
ctc_beam_search_decoder
(
probs_seq
.
tolist
(),
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
ext_scoring_func
)
return
swig_decoders
.
ctc_beam_search_decoder
(
probs_seq
.
tolist
(),
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
cutoff_top_n
,
ext_scoring_func
)
def
ctc_beam_search_decoder_batch
(
probs_split
,
...
...
@@ -78,6 +83,7 @@ def ctc_beam_search_decoder_batch(probs_split,
blank_id
,
num_processes
,
cutoff_prob
=
1.0
,
cutoff_top_n
=
40
,
ext_scoring_func
=
None
):
"""Wrapper for the batched CTC beam search decoder.
...
...
@@ -92,11 +98,15 @@ def ctc_beam_search_decoder_batch(probs_split,
:type blank_id: int
:param num_processes: Number of parallel processes.
:type num_processes: int
:param cutoff_prob: Cutoff probability in pruning,
:param cutoff_prob: Cutoff probability in
vocabulary
pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param num_processes: Number of parallel processes.
:type num_processes: int
:type cutoff_prob: float
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
...
...
@@ -109,4 +119,4 @@ def ctc_beam_search_decoder_batch(probs_split,
return
swig_decoders
.
ctc_beam_search_decoder_batch
(
probs_split
,
beam_size
,
vocabulary
,
blank_id
,
num_processes
,
cutoff_prob
,
ext_scoring_func
)
cutoff_prob
,
cutoff_top_n
,
ext_scoring_func
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录